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www.private-ai.org Research
on Privacy for Federated AI

▪ Federated Artificial Intelligence
• Local Training (in vehicle, edge cloud, device)
• Global controller aggregated into a global model

▪ Benefits of Federated Artificial Intelligence
• Access to more data by local training 
• Low latency by local decisions
• Better training: by aggregating learnings from many local usages
• Privacy by keeping training data local

▪ 3 Sponsors (Vmware, AVAST; Intel); 11 Academic Teams

Local AI 
Training

Local AI 
Training

Local AI 
Training

Local AI 
Training

Local AI 
Training

Local AI 
Training

Federated & 
Trusted AI
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ML Security and Privacy Risks
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Obtaining
Labeled

Data

Training

Model 
Distribution

Deployment
& Use

Life-cycle and Risks of Machine Learning

Kumar et al. - Adversarial Machine Learning – Industry Perspectives, IEEE SPW ‘20 (https://arxiv.org/abs/2002.05646)

Note: Before considering ML 
Security & Privacy, do 
your security homework first!

https://arxiv.org/abs/2002.05646
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Selected Research on Security and Privacy 

Kumar et al. - Adversarial Machine Learning – Industry Perspectives, IEEE SPW ‘20 (https://arxiv.org/abs/2002.05646)

Obtaining
Labeled

Data

Training

Model 
Distribution

Deployment
& Use

1. Defending against Poisoning Attacks

2. Model Stealing and Traitor Tracing

https://arxiv.org/abs/2002.05646
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Model Poisoning and Defenses
Ahmad Sadeghi & Team (TU Darmstadt)
Alexandra Dmitrienko & Team (U Würzburg)
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Poisoning Models by Poisoning Data

𝑊, 𝑏, 𝑋, 𝑌

𝑊, 𝑏

Local_Train()

𝑊, 𝑏

Training

Prediction

𝑊, 𝑏, 𝑋, 𝑌, 𝑋∗, 𝑌∗

𝑊∗, 𝑏∗

Local_Train()

𝑊, 𝑏:  model parameters
𝑋, 𝑌: data samples and labels
𝑋∗, 𝑌∗: backdoored samples and labels

𝑥 ∈ 𝑋𝑥∗ ∈ 𝑋∗

Car
𝑦 ∈ 𝑌

𝑊∗, 𝑏∗
𝑥 ∈ 𝑋𝑥∗ ∈ 𝑋∗

Car
𝑦 ∈ 𝑌
Bird

𝑦∗ ∈ 𝑌∗

[Bagdasaryan et al. AISTATS 2020]

Trigger Trigger



April 2023 10

Poisoned Cluster Identification
Classification

Outlier (eg Update Energy NEUP)→ Model Marked Suspicious

Fingerprint Extraction

Filtered Models
False Negative

DeepSight [Rieger et al., NDSS 2022]

10
Local 
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Other Current Work

Probability distributions over 
client updates

[Kumari et al., IEEE S&P 23]

➢ Compute a probabilistic 
measure over the clients’ 
weights

➢ Detection decoupled from the 
assumptions like iid/non-iid
data, attack strategy

Multi-Layer Poisoning based 
on Dynamic Noising

[Nguyen et al., USENIX 22]

➢ Adds dynamic noise to the 
model for mitigating backdoor

➢ Reduce necessary amount of 
noise by filtering and clipping

Client-Side Deep Layer Output 
Analysis

[Rieger et al., arXiv]

➢ FL filtering defense
➢ Filters models by analyzing

hidden layer outputs on 
clients’ local data

➢ Provides architecture for a 
privacy-preserving client-
feedback loop
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Model Stealing Attacks and Defenses

N. Asokan  https://asokan.org/asokan/
+ Team (Buse Gul Atli, Sebastian Szyller, Mika Juuti, Jian Liu, Rui Zhang, and 
Samuel Marchal and others)

https://asokan.org/asokan/
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Is model stealing an important concern?

Machine learning models: business advantage and intellectual property (IP)

Cost of
• gathering relevant data
• labeling data
• expertise required to choose the right model training method
• resources expended in training

Adversary who steals the model can avoid these costs
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Type of model access: black-box

Black-box access: user

• does not have physical access to model

• interacts via  a well-defined interface (“prediction API”):

• directly (translation, image classification)

• indirectly (recommender systems)

Basic idea: hide model, expose model functionality only via a prediction API

Is that enough to prevent model theft?

14
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𝑇𝑟𝑎𝑖𝑛𝑒𝑟

𝐿𝑖𝑏𝑠

Malicious client – Black Box Model confidentiality

Data owners

Analyst

ML 
model

Predict
ion 

Service 
Provid
er API

Client

Juuti et al. - PRADA: Protecting against DNN Model Stealing Attacks, Euro S&P ‘19 (https://arxiv.org/abs/1805.02628)

Orekondy et al. - Knockoff Nets: Stealing Functionality of Black-Box Models, CVPR ‘19 (https://arxiv.org/abs/1812.02766)

Extract/steal model

𝐷𝑎𝑡𝑎𝑠𝑒𝑡
ML 

model

Stolen

model

https://arxiv.org/abs/1805.02628
https://arxiv.org/abs/1812.02766
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Is black box model extraction a realistic threat?

Can adversaries extract complex models successfully? Yes[1]

• A powerful (but realistic) adversary can extract complex real-life models

• Detecting such an adversary is difficult/impossible

ML 
model

Predict
ion API

Client

Victim

Model

Surrogate 
Model
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Example: Extracting deep neural networks

Against simple DNN models[1]

• E.g., MNIST, GTSRB

Adversary

• knows general structure of the model

• has limited natural data from victim’s domain

Approach

• Hyperparameters CV-search

• Query using natural data for rough estimate decision 
boundaries, synthetic data to fine-tune

• Simple defense: distinguish between benign and 
adversarial queries

ML 
model

Predict
ion API

Client

Victim

Model

Surrogate 
Model

[1] Juuti et al. - PRADA: Protecting against DNN Model Stealing Attacks, EuroS&P ‘19 (https://arxiv.org/abs/1805.02628)

https://arxiv.org/abs/1805.02628
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Extracting large language models

18

https://newatlas.com/technology/stanford-alpaca-cheap-gpt/

https://futurism.com/the-byte/stanford-pulls-down-chatgpt-clone

https://futurism.com/the-byte/google-denies-bard-openai
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Defending against model theft

We can try to:
• prevent (or slow down[1]) model extraction, or
• detect[2] it
But current solutions are not effective.

Or deter attackers by providing the means for model ownership resolution (MOR):
• model watermarking
• data watermarking
• fingerprinting

[1] Dziedzic et al. - Increasing the Cost of Model Extraction with Calibrated Proof of Work, ICLR ’22 
(https://openreview.net/pdf?id=EAy7C1cgE1L)

[2] Atli et al. - Extraction of Complex DNN Models: Real Threat or Boogeyman?, AAAI-EDSML ‘20 (https://arxiv.org/abs/1910.05429) 

https://openreview.net/pdf?id=EAy7C1cgE1L
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White-box watermarking

Watermark embedding:

• Embed the watermark in the model during the training phase:​

• Choose incorrect labels for a set of samples (watermark set, WM)

• Train using training data + watermark set

Verification of ownership:

• Adversary publicly exposes the stolen model​

• Query the model with the watermark set

• Verify watermark - predictions correspond to chosen labels

Watermark setTraining set

Yadi et al. - Watermarking Deep Neural Networks by Backdooring, Usenix SEC ‘18 https://www.usenix.org/node/217594

https://www.usenix.org/node/217594
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DAWN: Dynamic Adversarial Watermarking of DNNs[1]

21

Goal: Watermark models obtained via model extraction

Our approach:

• Implemented as part of the prediction API

• Return incorrect predictions for several samples

• Adversary forced to embed watermark while training

Watermarking evaluation:

• Unremovable and indistinguishable

• Defend against PRADA[2] and KnockOff [3]

• Preserve victim model utility (0.03-0.5% accuracy loss)
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[1] Szyller et. al. - DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM ‘21 (https://arxiv.org/abs/1906.00830)

[2] Juuti et al. - PRADA: Protecting against DNN Model Stealing Attacks, EuroS&P ’19 (https://arxiv.org/abs/1805.02628)

https://arxiv.org/abs/1906.00830
https://arxiv.org/abs/1805.02628


Conclusion / Discussion
www.private-ai.org
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Conclusions

▪ Security and Privacy Homework comes first!

▪A wide range of AI/ML specific exists

• Some risks can be mitigated (in practice)

• Others are open research challenges

▪ Two example technologies:

• Poisoning Defenses for Federated Machine Learning

• Model Watermarking to identify stolen models
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