Lecture TU Darmstadt

From Science to Products – Security Research at Intel Labs

Matthias Schunter + slides from Steffen Schulz, Rafael Misozky, Jan Richter, ...

Legal Information

The views and opinions expressed in this presentation are those of the author and do not necessarily represent official Intel policy or position.

No product or component can be absolutely secure. Your costs and results may vary.

These materials are provided "as is." Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© 2021 Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

"In theory, theory and practice are the same."
In practice, they are not."

Outline

- 1. Security in practice does anyone care?
- 2. Industrial vs. Basic Security Research
- 3. Example Research Projects
 - a) Fuzzing Low-level Software
 - b) Post Quantum Crypto
- 4. Discussion / Q&A

Case Study: Secure electronic cash anyone?

Cash

Excercise (via chat)

- Advantages wrt Cash/CC?
- Disadvantages wrt Cash/CC?

Digital Cash in Digital Wallet

Credit Card

Source: tellermate.com eenewseurope.com ECONOMICTIMES:COM

Case Study: Secure electronic cash anyone?

Cash

?

Digital Cash in Digital Wallet

Expensive & in

Multiple Choice

- Yes this will work in practice
- No this will not work in practice +why (into chat)

e & Anonymous

Credit Card

Remote value transfers

Efficient

• Insecure; privacy-invasive

Source: tellermate.com eenewseurope.com ECONOMICTIMES:COM

Case Study: Secure electronic cash anyone?

Cash

?

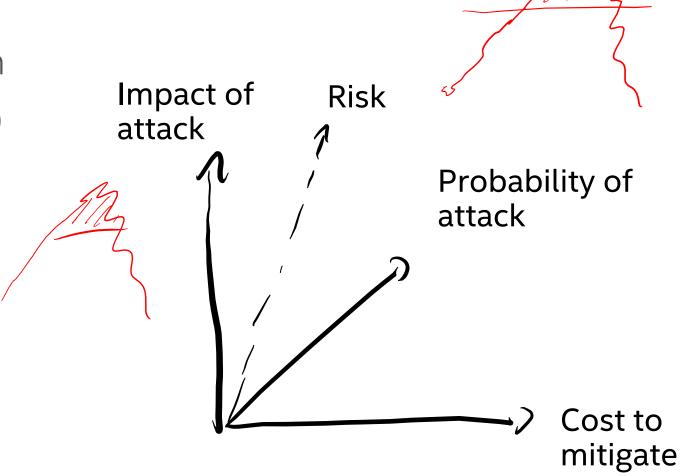
Trusted anonymity

Credit Card

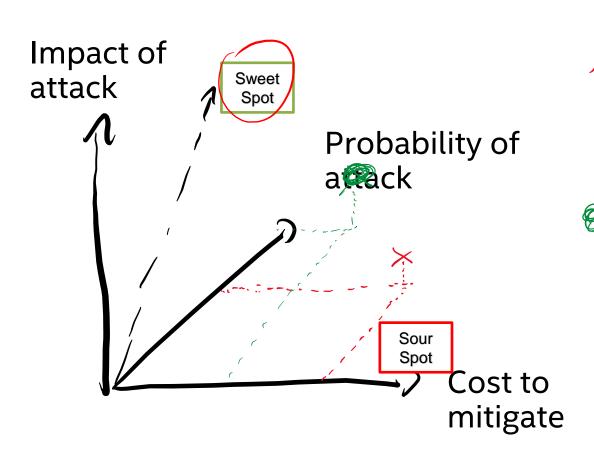
Cheap insurance

Digital Cash in Digital Wallet

- Requires infrastructure
- Breaks habits
- Cost higher than insurance
- Interesting main usecase...


Source: tellermate.com eenewseurope.com ECONOMICTIMES:COM

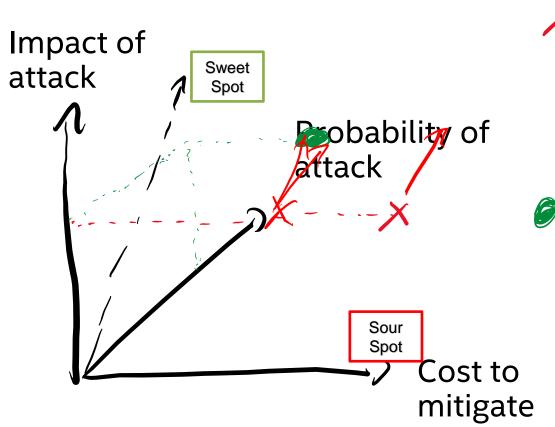
Is security important in the real world?


- Aim for a Rational Decision
 - Impact of attacks (cost+scale)
 - Probability of attacks
 - Cost to mitigate risk

But: Moving targets...

+ lu conjule lerfo.

Is security important in the real world?



Security for Credit Cards

- 90s: No internet limited scaling
 - Medium probability of attack
 - Limited cost per attack
 - High cost of mitigation (usability!)
- 2000s: Internet and ecommerce
 - High probability of attack
 - Limited cost
 - Medium cost of fixing

intel

Is security important in the real world?

Post quantum secure signatures

- Today no quantum computer
 - Zero probability of attack
 - High impact (*0 = zero risk)
 - High cost of mitigation
 - Once the QC machine has arrived
 - Medium probability of attack
 - High impact (high risk risk)
 - High cost of mitigation
 - But: Long life-time of HW

Security in Practice: Some lessons learnt

- Security is an attribute
 - Often engineered after the fact
 - Example: Security of neuro compute anyone?
 - Dynamically adjusted
- Security is a process
 - Secure Development Lifecycle
 - Includes response and repair!
 CVEs important for customer awareness!
 - Monitoring the environment is important! (90's PC on the Internet)
 - CVE counts have many causes and are no reliable metric across products/companies..

CVE Counts:

Product Name	Vendor Name	Product Type	Number of Vulnerabilities	
1	<u>Debian Linux</u>	<u>Debian</u>	OS	<u>5078</u>
2	<u>Android</u>	<u>Google</u>	OS	<u>3651</u>
3	<u>Ubuntu Linux</u>	<u>Canonical</u>	OS	<u>2984</u>
4	Mac Os X	<u>Apple</u>	OS	<u>2759</u>
5	<u>Linux Kernel</u>	<u>Linux</u>	OS	<u>2668</u>
6	<u>Iphone Os</u>	<u>Apple</u>	OS	<u>2300</u>
7	Windows 10	Microsoft	OS	<u>2260</u>
8	<u>Chrome</u>	Google	Application	<u>2161</u>
9	Windows Server 2016	Microsoft	OS	2021
10	Windows Server 2008	Microsoft	OS	<u>1973</u>
11	<u>Fedora</u>	<u>Fedoraproject</u>	OS	<u>1959</u>
12	<u>Firefox</u>	<u>Mozilla</u>	Application	<u>1916</u>
13	Windows 7	Microsoft	OS	<u>1854</u>
14	Windows Server 2012	Microsoft	os	<u>1728</u>
15	Windows 8.1	Microsoft	OS	<u>1636</u>

Source: https://www.cvedetails.com/top-50-products.php

Security in Practice: Some lessons learnt

- Risk Management Decision
 - Risk = probability x impact
 - Mitigation cost

Many moving targets...

Excercise (via chat or audio)

- Any questions?
- Any feedback

- Non-technical parameters are important!
 - Humans and training
 - Usage patterns and environment
 - All Employees play a role in security...
- Many important roles:
 - Crypto experts, SW security, SDL, ...
 - Developers, users, ...

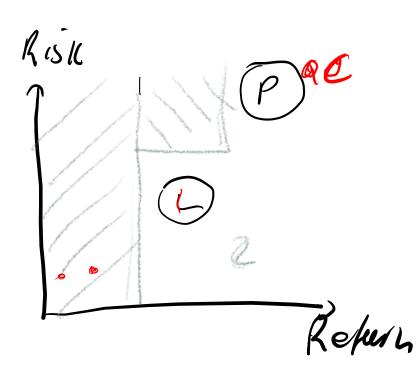
Outline

- 1. Security in practice does anyone care?
- 2. Industrial vs. Basic Security Research
- 3. Example Research Projects
 - a) Fuzzing Low-level Software
 - b) Post Quantum Crypto
- 4. Discussion / Q&A

Break...

Mission of Intel Labs

Mission


- Pioneering industrial research (P)
- Research on future products (L)
- Validation (Excercise (via chat or audio)

 What would you expect from an industrial research land

Porfolio Approach important

- Goal
- Life-cycle of research

Outline

- 1. Security in practice does anyone care?
- 2. Industrial vs. Basic Security Research
- 3. Example Research Projects

- a) Fuzzing Low-level SoftwareSlides: Steffen Schulz, Brian Delgato
- b) Post Quantum Crypto
- 4. Discussion / Q&A

Secure Development Lifecycle (SDL)

- Some Goals:
 - Security by design
 - Well-defined security quality of all products
- V-Model
 - Design: Require Implementatio

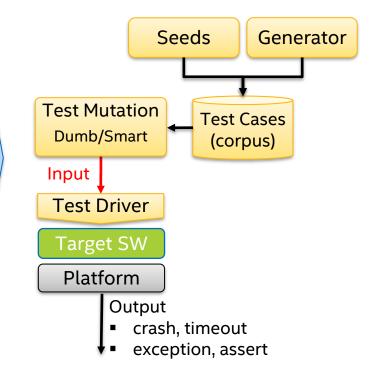
Excercise (chat): SDL seems a no-brainer

- Why is it hard to establish in practice?
- Once a perfectly secure product ships, what can still go wrong?
- Assurance: Tes Maintenance and CERT
- Fuzzing as one tool to validate software

What is Fuzzing?

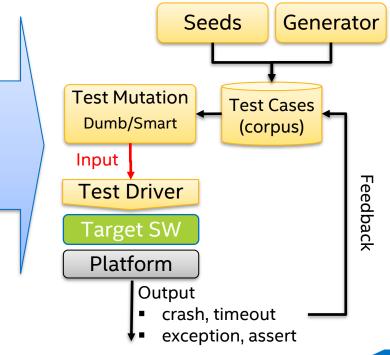
- "Smart" randomized testing of software at scale
- Find inputs that crash, violate assertions or other checks

JPEG images generated from initial seed value "hello lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.htm

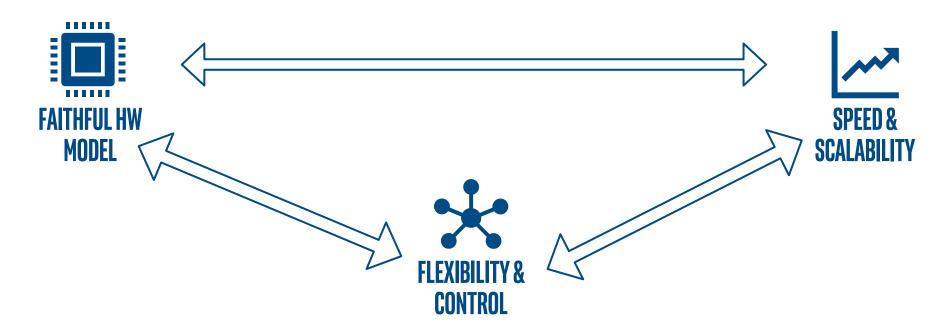

(Random) Testing

- Needs good inputs/generators
- High effort, small targets

Test Vectors Input Test Driver Target SW Platform Output crash, timeout exception, assert


Mutation-based Fuzzing

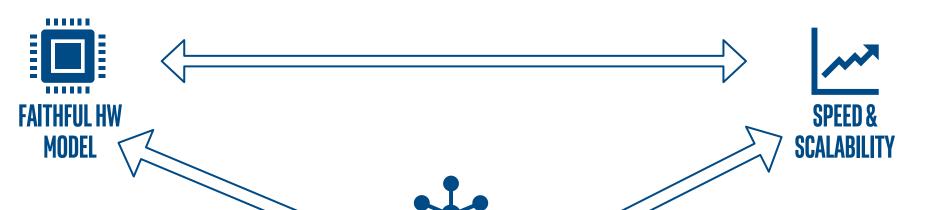
- Expansion of simpler inputs/generators
- Execution focused around test corpus


Feedback Guided Fuzzing

- Infinite, generic test expansion
- Iteratively discover completely new inputs

SUCCESS CRITERIA FOR SCALABLE FUZZING

- Although successful in software, fuzzing is difficult to deploy in low-level code
- It's also difficult to create an environment that is "real" and fast at the same time

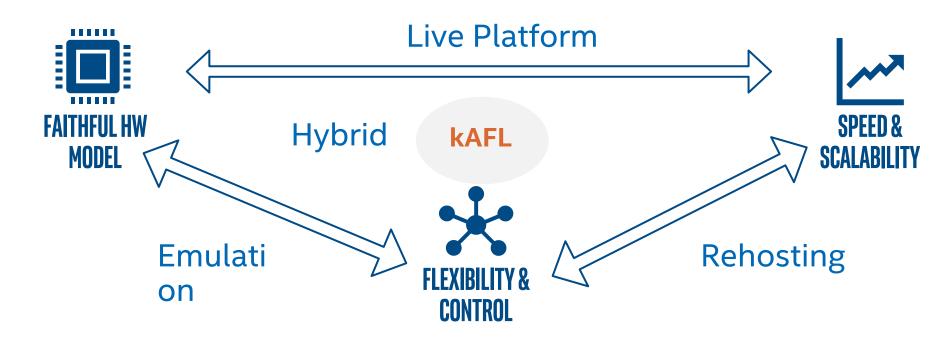

THREE APPROACHES FOR SCALABLE FUZZING

Excercise (chat): Advantages / Disadvantages of

- *Life platform = real hardware*
- Emulation the hardware
- Re-hosting (running firmware as SW)
 Although successful in software, fuzzing is difficult to deploy in tow-tever code

It's also difficult to create an environment that is "real" and fast at the same time

APPROACHES

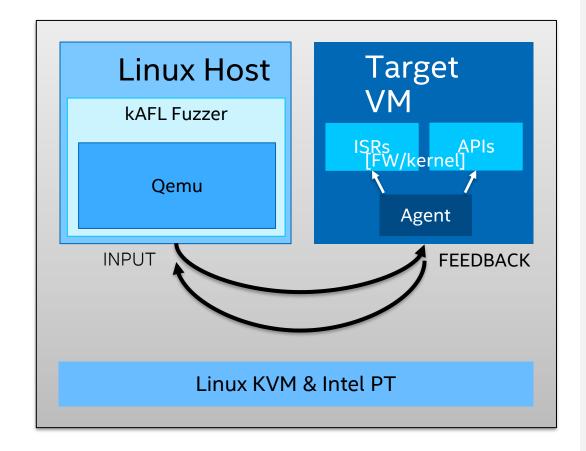


CONTROL

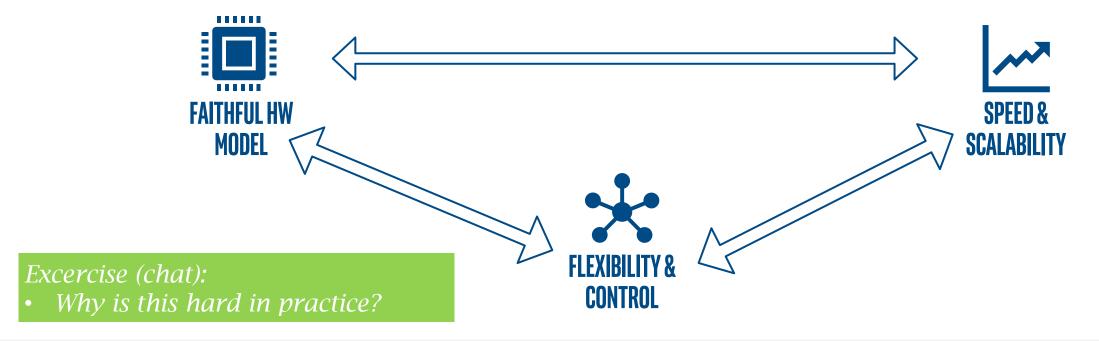
- 1. Live HW
- 2. HW Emulation
- **Re-hosting**

FIRMWARE FUZZING FOR VIRTUAL MACHINES

- Kernel AFL (kAFL): research vehicle developed at Ruhr-University Bochum
 - Accelerated execution & feedback using Intel® Virtualization Technology & Intel® Processor Trace features
 - Simple and fast, no assumptions on toolchain or target SW



FIRMWARE FUZZING USING VIRTUAL MACHINES


Kernel AFL (kAFL) - No assumptions on toolchain or guest OS

- ✓ Usability: Easy to get started on UEFI, Zephyr RTOS and others
- ✓ Flexibility: Fast snapshot/reset, attach serial console or debugger
- ✓ Scalability: No special HW, work on laptop and scale on servers
- **X** Open Problems
 - How do we cope with unsupported devices/peripherals?

RESEARCH CHALLENGE: I/O MODELING

- Faithful device models are a major bottleneck across all approaches
- Test focus typically on higher level parsing & processing, not I/O
- Can we overcome I/O dependencies for more scalable testing?
 - Generalize emulation, use machine learning, or other automation?

intel

PROCESS CHALLENGES

Continuous Integration environments can have thousands of check-ins a day

- How to fuzz effectively?
- Testing just the code being modified is helpful
- Tools like AFL Go (Bohme, M., Pham VT. et al) have potential to better target fuzzing

Complex tool-chains make it harder to change/modify compilers

How to handle triage at scale

- Fuzzers can provide a number of findings that require disposition
- How to better remove redundant findings?
- How much crash/hang analysis can be automated?

Outline

- 1. Security in practice does anyone care?
- 2. Industrial vs. Basic Security Research
- 3. Example Research Projects
 - a) Fuzzing Low-level Software
 - b) Post Quantum Crypto
- 4. Discussion / Q&A

Break...

Post-Quantum World

Advances in the development of Quantum-Computers

Public-Key Cryptography is threatened

Post-Quantum Cryptography comes to the rescue

intel

Quantum Attacks and Mitigations

- Symmetric Cryptography:
 - **Issue:** Grover's algorithm [Gro'96] is expected to break AES128 and SHA256
 - Mitigation: Increase keys/parameters of algorithms (Fx: AFS128 → AFS256)
- Public Key Crypto Excercise (chat): You are tasked to introduce PQC at Intel -
 - Issue: Shor's algWhat obstacles do you expect?
 - Mitigation: Repl What hinders / accelerates adoption?
 - Where would you start?

Replacements for

encryption algorithms

Quantum Cryptography:

- ✓ Uses quantum physics to achieve higher security
- Requires quantum infrastructure
- Restricted to Key Exchange (e.g., [BB84])
- No standards

Post-Quantum Cryptography:

and ECC

- ✓ Based on harder math problems
- ✓ Can be implemented in current infrastructure
- ✓ Offers all required features
- Standards under development

Changing Tires on a Moving Car

- PQC transition is an unprecedented move <u>Crypto adoption takes decades</u>
 - Standards are being defined at the same time cryptanalysis is being understood
 - Post-Quantum Crypto literature may not offer drop-in replacements for all features

Hash Based Signatures

Security: relies on well-known security notions

Code Based Cryptography

Digital Signatures

<u>Security</u>: (presumably well-known) problems from coding-theory

Multivariate Cryptography

Encryption, Key Exchange, Signatures

Security: other problems from multivariate quadratic equations

Lattices Based Cryptography

<u>Security</u>: (presumably well-known) problems from lattices

Isogeny Based Cryptography

Encryption, Key Exchange, Signatures

<u>Security</u>: other problems from isogenies of super-singular elliptic curves

Remarks

- PQC transistion is an unprecedented move
- Industry perspective is critical for wide adoption
 - Ease of deployment
 - Scalability
 - Maintenance
- Simple & well-understood is better than complex & less-understood
- Standards are much needed but we should not rush at the cost of security

Outline

- 1. Security in practice does anyone care?
- 2. Industrial vs. Basic Security Research
- 3. Example Research Projects
 - a) Fuzzing Low-level Software
 - b) Post Quantum Crypto

4. Discussion / Q&A

This is the last slide...

- Any questions?
- Any feedback/comments (chat/audio)?