DIAT: Data Integrity Attestation
for Resilient Collaboration of Autonomous Systems

Tigist Abera*, Raad Bahmani*, Ferdinand Brasser*, Ahmad Ibrahim*, Ahmad-Reza Sadeghi*, and Matthias Schunter

*Technische Universitit Darmstadt, Germany
TIntel Labs, Portland, OR, U.S.A.
{tigist.abera, raad.bahmani, ferdinand.brasser, ahmad.ibrahim, ahmad.sadeghi } @trust.tu-darmstadt.de,
matthias.schunter@intel.com

Abstract—Networks of autonomous collaborative embedded
systems are emerging in many application domains such as ve-
hicular ad-hoc networks, robotic factory workers, search/rescue
robots, delivery and search drones. To perform their collaborative
tasks the involved devices exchange various types of information
such as sensor data, status information, and commands. For the
correct operation of these complex systems each device must be
able to verify that the data coming from other devices is correct
and has not been maliciously altered.

In this paper, we present DIAT — a novel approach that
allows to verify the correctness of data by attesting the correct
generation as well as processing of data using control-flow
attestation. DIAT enables devices in autonomous collaborative
networks to securely and efficiently interact, relying on a minimal
TCB. It ensures that the data sent from one device to another
device is not maliciously changed, neither during transport nor
during generation or processing on the originating device. Data
exchanged between devices in the network is therefore authen-
ticated along with a proof of integrity of all software involved
in its generation and processing. To enable this, the embedded
devices’ software is decomposed into simple interacting modules
reducing the amount and complexity of software that needs to
be attested, i.e., only those modules that process the data are
relevant. As a proof of concept we implemented and evaluated
our scheme DIAT on a state-of-the-art flight controller for
drones. Furthermore, we evaluated our scheme in a simulation
environment to demonstrate its scalability for large-scale systems.

I. INTRODUCTION

Embedded systems have been omnipresent for many years
mostly performing simple tasks in isolation. However, emerg-
ing applications such as IoT (e.g., smart cities/homes/factories)
and autonomous systems (e.g., cars, drones) require embedded
systems to be highly connected and carry out autonomous
as well as collaborative tasks. In autonomous collaborative
system no central entity coordinates actions of the individual
(autonomous) devices. The involved devices interact with each
other and coordinate their actions by exchanging information,
such as sensor data, status information, and commands. The

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-X

https://dx.doi.org/10.14722/ndss.2019.23420
www.ndss-symposium.org

correct and secure functioning of an autonomous collaborative
system strongly relies on the integrity of the devices involved
in its operation. In particular, it must be ensured that the
data (sensor, commands, status) on a device has not been
maliciously modified before it is exchanged with any other
device.

Remote attestation is a powerful security service for veri-
fying the integrity of the software state of remote devices. It
enables a remote entity, called verifier, to verify the integrity of
the software running on an untrusted device, called the prover.
However, designing attestation schemes for autonomous col-
laborative systems poses a number of challenges that cannot be
met by the existing attestation solutions. Conventional remote
attestation solutions face two problems. They are static and
not scalable.

Static attestation approaches provide a proof that the soft-
ware initially loaded by the prover is unmodified [33], [25],
[L6], but cannot detect run-time attacks that exploit, for in-
stance, code-reuse techniques [34], [9], [17]. Recently progress
has been made in tackling the static character of conventional
attestation: The work in [2], [[14], [36], [L5] proposes control-
flow attestation of the code running on the prover device. This
enables the verifier to detect run-time attacks based on code
reuse. Enforcement techniques for control-flow correctness,
such as control-flow integrity (CFI) [1], do not provide infor-
mation about the executed control-flow path on collaborating
devices. Control-flow attestation, however, gives the verifier
information about the executed control-flow, which enables
the verifier to detect not only attacks that do not conform to
a software program’s control-flow graph, like return-oriented
programming (ROP) [34]], but also a subset of attacks that lead
to a valid but unintended program execution, i.e., non-control-
data attacks [L1], [20]. Moreover, control-flow attestation
enables the verifier to determine the appropriate reaction, in
case of an attack. With CFI, a violating device would be
stopped and possibly crashed, which is particularly dangerous
in safety critical applications. With control-flow attestation,
in contrast, contextual reactions can be implemented, e.g.,
excluding a compromised device from the collaboration and
the entire communication.

Unfortunately, control-flow attestation solutions assume a
powerful verifier that can maintain and search in a very

large database of execution paths which is very expensive for
autonomous systems where each embedded device must be
able to act as both verifier and prover.

The other limitation of conventional attestation solutions
lies in their scalability, i.e., they only allow for attesting
individual devices [33], [25]], [16]. This problem was addressed
by collective attestation of networks of connected devices [6],
[Sl], [21]. However, these schemes mainly assume a central
verifier which is not available in autonomous networks where
the verifiers are distributed.

Goal and Contributions. We aim at tackling the above-
mentioned problems and present DIAT — the first efficient and
secure collective run-time attestation scheme for autonomous
collaborative systems of embedded devices. In particular,
DIAT ensures on-device data integrity against malicious ma-
nipulation. In the context of Data-Flow Integrity (DFI) the
term data integrity is used to describe that all operations
on data and variables obey a program’s Data-Flow Graph
(DFG). In contrast, in this work we focus on data that has
been explicitly selected to be controlled. This data inherits
its integrity from the integrity of the software modules that
processed it. We provide a detailed comparison to related work
on data integrity in Section

We achieve efficiency by decomposing the underlying em-
bedded software into small interacting software modules and
attest the control-flow of those modules that are relevant for
data exchanged in a given interaction. For example, consider
two drones that are interacting by exchanging their location
information (e.g., GPS coordinates). The software modules to
be attested are those responsible for determining and possibly
processing (altering) a drone’s GPS coordinates. The control-
flow attestation guarantees that the data is only processed
in a benign execution path. We implemented and evaluated
DIAT on collaborating autonomous drones, demonstrating its
effectiveness and efficiency.

In summary, DIAT provides end-to-end data integrity pro-
tection for collaborative autonomous networks. This requires
tackling multiple challenges that constitute our individual
technical contributions:

e Data Integrity Attestation. We secure devices’ interaction
by ensuring the integrity of data shared between devices
(e.g., sensor readings). This is done by linking the data
with an attestation report reflecting the correct generation
and processing of the data, given our adversary model
(see [Section TI).

o Modular Attestation. We present the design and imple-
mentation of modular attestation — The software on prover
devices is decomposed into simple interacting modules
and only those modules that process a particular data of
interest are attested. Modular decomposition reduces the
attestation overhead on both the prover and the verifier
devices.

e Novel Execution-Path Representation. We propose a
novel representation of execution paths, which allows
control-flow attestation of complex software programs.
Our solution has linear overhead on the verifier, com-

Network

L

Figure 1: Abstract view of a collaborative autonomous system.

Device

pared to the exponential overhead imposed by previously
proposed solutions [2], [14].

o Implementation and Evaluation. We present a proof-of-
concept implementation of our scheme based on Pixhawk
PX4 flight controller software Our simulation results for
autonomous networks show the scalability of DIAT.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider collaborative autonomous systems, i.e., net-
works of connected entities (devices) which interact with
each other to perform one or more tasks. In such a network,
typically no central entity is needed to coordinate actions of
individual devices. However, a central entity may be used
for maintenance reasons. The devices within the network are
mutually distrusting. Redundancy in the network allows the
overall system to tolerate the misbehavior of individual devices
that can be caused due to faults or by attacks on devices.
Redundancy is achieved, for instance, when the network is
formed of homogeneous devices, so that one device can easily
be replaced by another device in the network. In this work, for
brevity, we assume a homogeneous network. We stress that the
focus of this paper is on how to detect the misbehavior of a
device in a collaborative autonomous system. How to react to
an infected device is a complementary problem and depends
on the underlying security policy.

Devices. Each individual device is self-contained and au-
tonomous, and can perform basic tasks by itself. Further, in
order to coordinate their actions while performing more com-
plex tasks, the devices exchange information, such as sensor
data, status information, and commands. The software stack
of embedded devices is less complex than on typical desktop
or server systems. However, this does not preclude devices
with embedded operating systems that run multiple tasks in
parallel (e.g., real-time operating systems). Figure [I] shows
the software model we assume in this work. Individual tasks
or software modules of a device are strongly isolated from
all other software components, including operating system
and other privileged software, based on lightweight embed-
ded hardware security architecture (see Section [VIII). The
communication between software modules takes place over
a well-defined interface which allows tracking of data-flow
between the modules. Our implementation on a popular flight
controller for drones shows that our assumptions are realistic
for the class of devices for which DIAT was designed.

1 https://dev.px4.io/en/concept/flight_stack

https://dev.px4.io/en/concept/flight_stack

Communication. Devices are connected through wireless
network technology, like WiFi, Bluetooth or some custom
solution, where each device can be uniquely addressed. Com-
munication does not need to be direct, i.e., devices could, for
example, form a meshed network to forward messages to each
other.

A. Adversary Model

We assume the adversary has compromised and gained
control over a subset of devices in a collaborative system. The
adversary’s goal is to manipulate collaborative tasks by send-
ing manipulated data to other, un-compromised autonomous
devices.

We assume a stealthy adversary that has the goal to under-
mine the correct behavior of autonomous devices while evade
detection. Therefore, denial-of-service (DoS) attacks, e.g, jam-
ming the network communication between devices or trying to
destroy devices (e.g., one device physically attacking/crashing
into another device in case of drones or vehicles), are out of
the scope of this work.

As common in remote attestation literature, we consider
software-only attacks. However, unlike conventional attesta-
tion schemes we assume that the adversary can manipulate
code, e.g., while stored on persistent storage, as well as
launch run-time attacks. Run-time attacks can be divided into:
(1) control-data attacks, that introduce non-existing edges
to the execution path, which are not part of the program’s
Control-Flow Graph (CFG), e.g., Return-Oriented Program-
ming (ROP) attacks [34]; and (2) non-control data attacks.
Non-control data attacks can be split into two sub-classes.
(2a) Attacks that do not add new edges but have an observable
effect on the control flow of execution, like unexpected number
of loop iterations; and (2b) attacks that do not change the
executed control flow at all, e.g., changing of variables used in
the generation of data. We excluded attacks that do not change
the control flow as they are subject to active research and no
general detection policy is known at the time of writing. If
an appropriate policy is developed in the future DIAT can be
adapted to utilize it to also cover such attacks.

Each device of the network is equipped with a lightweight
hardware security architecture, which protects its TCB. All
other software, including the untrusted OS, is assumed to be
potentially compromised. The hardware security architecture
further ensures isolation between a device’s software modules.
Hardware attacks are considered out of scope in this work.
Embedded security architectures are highly integrated into
the system-on-a-chip (SoC) designs and cannot be easily
attacked [36].

We assume that sensors and actuators of a device are trusted
and report benign readings and perform actions as instructedE]
This precludes false data injection attacks like spoofed GPS
signals. However, the software and drivers controlling the
sensors and actuators might be controlled by the adversary.

2Misreading sensors and misbehavior of actuators due to faults are an
orthogonal problem and can be handled by fault tolerant designs.

B. Requirements

The main goal of DIAT is to enable efficient and secure in-
teraction/collaboration of embedded devices in an autonomous
system. This concerns several objectives as follows:

e Code integrity on devices: Unintentional/malicious alter-

nation of the code running on a device can be detected.

e Data integrity on devices: Unintentional/malicious al-
ternation of the data on a device (before being sent
out to other devices) can be detected. This means data
can only be modified in a non-malicious way. This is
necessary as devices do not only exchange raw data, like
sensor readings, but mostly processed data. For instance,
when sending position information the receiver expects
coordinates instead of a set of timestamps sent out by the
GPS satellites (as received by the GPS driver module).

e Data integrity and authenticity during transportation:
Malicious alternation of the data when traversing from
one device to another must be detected.

Attestation schemes are used to ensure the code and data
integrity on devices, i.e., any manipulation can be detected
by the verifying device. To capture the run-time behavior of
the code DIAT adopts the idea of control-flow attestation [2]].
However, in the context of autonomous embedded systems the
attestation scheme must have the following properties:

o Attestation efficiency: Attestation is applied only to the
critical code, i.e., those modules that process a particular
data of interest. Attesting the entire software on a device
would allow making a statement about the correctness of
the data being processed. However, this induces a huge
overhead as the code processing a specific piece of data
is usually only a small subset of the entire software stack.

o Attestation latency: The attestation should not cause de-
lays beyond the bounds required by autonomous systems.
More concretely, the generation of the attestation report
on the prover side must not delay the sending of data,
while the verification of the attestation report on the
verifier side must not delay the processing/usage of the
received data.

To meet the above mentioned objectives, each device must
fulfill the following requirements:

o Isolation architecture: The software modules/components
are isolated from each other. Additionally, function mod-
ules are isolated from privileged software components
such as operating system. Therefore, the OS is not part
of DIAT’s TCB.

e Data-flow monitoring: Software components/modules
that access the data of interest can be identified.

o Control-flow monitoring: The control-flow of individual
modules must be captured when required.

e Device key: Each device is equipped with a platform
key-pair. The device’s secret key and other cryptographic
parameters are protected by the hardware security ar-
chitecture. It is exclusively accessible from the device’s
TCB. Hence, the adversary cannot forge the attestation
reports generated by the device’s TCB or extract device’s

Obstacle x x x t,

—~ —~

UENE S

Figure 2: Example of collaborative drones.

secret keys.

o Attestor: In a remote attestation protocol, the compo-
nent(s) involved in measuring, attesting, and verifying a
system’s state are protected as part of the TCB.

Examples of lightweight security architecture providing run-

time isolation, secure storage, and secure boot (integrity)
in order to protect DIAT’s TCB have been developed by
academia (e.g., TrustLite [24] and TyTAN [7]) as well as
industry (e.g., ARM TrustZone-. We discuss how these
solutions can be adopted by DIAT in Section

On the communication between the individual devices the

following requirements are imposed:

o Secure channel: The integrity and authenticity of data sent
over the network between the devices must be ensured. To
enable the establishment of a secure channel each device
must be equipped with platform key-pair.

o Infrastructure: Public key infrastructure (PKI) must be in
place.

Use-case Example. We will now introduce an example use
case of autonomous systems to illustrate our concept. The
example is simplified for the sake of clear illustration, how-
ever, the principle remains the same even for larger and more
complex systems.

Consider a set of autonomously flying drones that collabo-
rate to perform a distributed ground search, e.g., as part of a
search and rescue mission. Each drone has a set of sensors,
like cameras, which allow it to monitor a certain area at a
time. In order to cover more ground in a short time frame,
multiple drones fly in formation. When the drones operate in
close proximity they have to coordinate with each other to
avoid collisions. Figure [2] shows a scenario where a drone has
to evade an obstacle.

The three drones (D;, Do, and Ds) are flying in line abreast.
Each drone is an autonomous entity that can operate on its
own. In particular, each drone is equipped with sensors which
enable it to position itself (e.g., GPS), measure its movement
(accelerometer, gyroscope, etc.), and sense its environment
(e.g., via ultrasonic, infrared, Lidar). Note that, those sensors
are common in commercial off-the-shelf (COTS) systems and

even customer grade drones are equipped with such sensorsE]

Finally, the drones are wirelessly connected to each other and
can coordinate their actions.

3 https://community.arm.com/processors/trustzone-for-armv8-m/b/blog
4 http://www.dji.com/phantom-4-pro

During the drones’ mission, D; detects an obstacle through
a front-facing distance sensor. D has three options for reacting
to this situation: (1) it could abort its mission, i.e., stop or
fly back; or it could circumnavigate by either (2) moving
to the left, or (3) to the right. D; by itself does not have
sufficient information to be able to decide in which direction
to move, as the obstacle could expand in both directions. By
exchanging information with other drones, however, D; can
learn that no obstacle has been detected in front of Dy. As a
consequence, D; decides to evade the obstacle by moving to
the right. Albeit this would prevent D; from colliding with the
obstacle it would lead to a collision with Ds. Note that, D; is
also aware of Dy’s position through position sharing among
the drones. Therefore, in order to avoid another collision, D;
has to coordinate with D,. In particular, D; requests Do to
also move to the right to make space.

The result of the interaction between D; and D5 is shown
in Figure 2] The gray drones show their positions after they
have coordinated their actions, where all three drones can pass
by the obstacle safely.

III. DIAT DESIGN

The core idea of DIAT is to enable autonomous devices to
trust the exchanged information needed to perform a collabo-
rative task within a network. This is done by means of a remote
run-time attestation scheme that allows devices to provide
an authentic integrity proof of the data they are exchanging.
Whenever information is exchanged, the sender augments
the data with a proof that this data has been generated and
processed correctly. The receiver can then verify this integrity
proof and gain trust in the correctness of the received data.

Static (binary) attestation allows the verifier to detect ma-
nipulations of the static code and data, e.g., due to a malware
infection. However, static attestation cannot capture the run-
time behavior of the code and hence cannot detect run-time
attacks that leverage state-of-the-art code-reuse techniques,
such as return-oriented programming (ROP) [34]. To detect
this class of attacks, researchers have recently taken the
first steps towards run-time attestation schemes by means
of control-flow attestation that records the execution path
of the code running on the prover [2], [14)]. Unfortunately,
control-flow attestation schemes pose a significant overhead
on both the prover and the verifier making it impractical for
resource-constrained embedded systems. DIAT significantly
reduces the overhead of control-flow attestation and makes it
applicable to collaborative systems of embedded devices.

A. Challenges

The main challenge of DIAT is to enable secure and
efficient data integrity and control-flow attestation. Efficiency
plays an important role given that collaborating devices are
resource constrained embedded devices that must act simul-
taneously as both verifier and prover. As mentioned before,
run-time attestation incurs significant overhead on the involved
entities since: (1) as provers they need to continuously monitor
the execution of their software, and (2) as verifiers, they

https://community.arm.com/processors/trustzone-for-armv8-m/b/blog
http://www.dji.com/phantom-4-pro

/ Entity I\

Module 1 Module 2 Module 3 Module 4] Module 5
Ctrl-flow Ctrl-flow EE Ctrl-flow Ctrl-flow EE Ctrl-flow
o monitor monitor | monitor monitor |} monitor
n T T u
-~ 4 4
‘ Data-flow monitor ‘
Isolation Comm.
Sensor Secure boot | Hardware -
Architecture Interface

S =/

Q Basic block — Control flow = Data flow

Figure 3: DIAT system architecture. Open switches symbolize
activation of control-flow monitoring.

need to know the benign execution paths and verify them at
run-time. The main contribution of DIAT is to tackle these
challenges by (1) minimizing the size of the code to be
attested, (2) minimizing the attestation time, and (3) reducing
the size of attestation reports, allowing for secure and efficient
attestation. In particular, code size is minimized using modular
attestation, attestation time is reduced based on data-flow
monitoring, and attestation reports are compressed by using
multisets for execution path representation.

B. Architecture

Figure [3] shows the abstract view of a device using DIAT.
To enable data integrity attestation all modules that process
the data of interest are attested while they are processing this
data. This reduces (1) the code to be attested to only those
modules that process the data; and (2) the attestation time,
i.e., modules are only attested during the time frame in which
they are processing the data. As shown in Figure [3] the data-
flow monitor DFMonitor traces the flow of data within the
device and activates attestation for each module that processes
the data of interest. In Figure [3| data flows first from the
sensor into Module 1, further into Module 2 and finally
into Module 5 from where it is sent out. The DFMonitor
traces this flow of data and activates the control-flow monitor
CFMonitor for the corresponding modules (shown by the
closed switches between CFMonitor and DFMonitor for the
involved modules). We refer to data of interest as sensitive
data and to software modules involved in the processing of
sensitive data as critical tasks or critical modules.

Please note that sensitive data is application-dependent. For
instance, in the scenario described in the use case example, the
location information is considered sensitive data (Section [I).
However, in other scenarios (or applications) different data
may be considered sensitive. Consequently, critical modules
must be determined dynamically at run-time.

The control-flow information of critical modules is recorded
using a multiset that indicates the number of executions
for all branches taken at run-time. Details of control-flow
recording are presented in Section Using this execution

path representation the verifier learns for instance how many
times a loop has been iterated through. This enables the
detection of some classes of data-only attacks, e.g., those
which increase the number of iterations of a loop (see Sec-
tion . However, unlike previous control-flow attestation
schemes [2], the verification overhead is significantly reduced,
as the verifier does not need to maintain and search a database
which includes all valid execution paths of software modules.
It is sufficient for the verifier to know the Control-Flow Graph
(CFG) of the attested modules. In the following we elaborate
on the three main building blocks of our design (1) modular
attestation, (2) data-flow monitoring, and (3) execution path
representation.

Modular Attestation. The software on each device is decom-
posed into a number of small interacting software modules or
tasks. Modular attestation is enabled by the fact that modules
are isolated, i.e., the control-flow path recorded for a module
does indeed represent the behavior of that module. The un-
derlying lightweight hardware security architecture [[7] enables
isolation of modules such that the memory and the execution
of a module cannot be influenced by other modules or even
by privileged software like the operating system. We discuss
lightweight hardware security architectures for isolation in
Section Modules are defined/identified using static
analysis based on data and control-flow dependencies. DIAT
does not require programmer’s assistance, e.g., in form of code
annotation. Further, modules can be overly large, however,
this would only influence performance but not the security of
DIAT. Note that, many avionic/automotive systems (including
flight controllers for drones) already have modular design [28]].
This modular design is due to safety aspects mainly in
autonomous systems in vehicles. Modular software design is
a well-investigated topic in software engineering [4], [19],
[3]. The cost of modular transformation is highly application
dependent and may not be formulated in general statements.
DIAT targets complex software that is designed in a modular
fashion. Small embedded software, e.g., controller for a sensor,
may indeed be monolithic. However, such software is not the
focus of DIAT.

Data-Flow Monitoring. Identifying the modules involved
in generating a particular data is accomplished via coarse-
grained data-flow monitoring. As modules are isolated, they
cannot directly communicate with each other (e.g., by mem-
ory access). Communication happens through a well-defined
interface controlled and monitored by a component of DIAT
referred to as DFMonitor. This enables DIAT to trace the
data-flow between modules and dynamically identify the
critical modules for particular sensitive data. Services for
communication between modules or tasks are common in most
system architectures. Therefore, DIAT does not incur a system
redesign. The communication service is only slightly extended
to trace the flow of data. DFMonitor is described in more detail
in Section [Vl

Execution Path Representation. Existing control-flow at-
testation schemes [2], [14] induce a high overhead on the

verifier, who is expected to store and repeatedly search a
very large database of all possible execution paths. The size
of this database grows exponentially with the number of
control-flow events in the code. To tackle this problem, we
designed a novel execution path representation that is based
on Multiset Hash (MSH) functions [12]. Our representation
provides an under-approximation of executed paths. However,
the amount of information provided by this representation is
sufficient to detect all attacks that cause deviation from the
benign control-flow, e.g., ROP attacks, as well as general Data-
Oriented Programming (DOP) attacks. We elaborate on this
in Section m In particular, our MSH-based representation
preserves the overall execution path and the number of times
loops are executed. However, for each loop it does not preserve
the order of different paths that are executed within the loop.
This leads to a verification overhead which is linear in the
number of control-flow events. The verification policy, which
enables the detection of different kinds of attacks can be
freely defined by the verifier and updated after the system
deployment.

Summary. DIAT identifies at run time the software compo-
nents, which process a particular sensitive data (e.g., sensor
inputs that we consider benign). If all of these components
are benign, then the integrity of the data is preserved. In order
to detect malicious data modifications, we link exchanged data
with a run-time attestation report, which attests the execution
path of all components involved in the modification of this
data. Hence, data integrity is provided by a proof of the correct
processing of data based on control-flow attestation. Other
unauthorized data modifications are prevented by module
isolation and secure channels.

IV. PROTOCOL DESCRIPTION

In this section we describe DIAT’s attestation protocol in
more details. For brevity we explain the protocol between two
devices and later extend it to connected networks. DIAT aug-
ments the devices’ messages and execution with the necessary
control-flow attestation and authentication in order to secure
devices’ interactions, hereby providing a secure and resilient
autonomous network.

A. Multiset Hash Function

Before going into protocol details we first explain the Multi-
set Hash (MSH) function that is used to record the control-flow
of modules. A multiset is a set that allows its members to occur
multiple times. The number of occurrences of an element in a
multiset is called the multiplicity of that element. A multiset
hash function is a hash function that generates a fixed-length
digest, denoted by MSH-value, for a given multiset of arbitrary
number of elements. Unlike traditional hash functions, MSH
allows updating the hash digest by incrementally adding an
element to the multiset. Consequently, two hash values for
the same multiset can be compared regardless of the order
in which the elements were added to the hash digest. As an
example, consider the multiset M = {<A,I>,<B,1>,<C,3>},
which is formed of the elements A with multiplicity 1, B

with multiplicity 1, and C' with multiplicity 3. Consider two
MSH-values vali and wvaly that are generated over M. val; is
generated by adding the elements B, C', C, and C' in that order
to the hash digest of A, while vals is generated by adding the
elements C, B, C, and A to the hash value of C. A MSH
scheme allows verifying that val;, and vals are equivalent, i.e.,
they are indeed hash values of the same multiset /. Finally, A
MSH is multiset-collision resistant if it is difficult to find two
different multisets for which the MSH generates equivalent
MSH-values.

B. DIAT for Two Devices D; and D;

Figure [4| shows our protocol (referred to as interact) for
interaction between two devices D; and D;. interact starts
when D; sends D; a request for sensitive data which must be
generated and processed securely. This request is accompanied
with a fresh random nonce N. After receiving the request D;
generates the requested data data; (e.g., GPS coordinates)
by executing the necessary software exec(code).

The data-flow monitor (DFMonitor) monitors continuously
the communication between different modules running on D;
and returns the IDs xq, ..., x4 of critical tasks for data; (i.e.,
the IDs of all software modules which influence the final value
of the sensitive data data;).

Concurrently, the control-flow monitor (CFMonitor) starts
monitoring the execution and recording the control-flow within
critical modules whose IDs zi,...,z4 are determined by
DFMonitor. The control-flow of each critical module is
recorded by CFMonitor as a MSH of executed control-flow
events, i.e., edges in the Control-Flow Graph (CFG) of the
module. For example, for a critical module Module 1,
the MSH-value wval; of multiset M; = {<el, 2>, <e2,1>}
shows that during execution of Module 1, the edge el was
executed twice and the edge e2 was executed once. The
output of CFMonitor is the set of control-flow attestation
results hy, , ..., hy,, for the critical modules z1, ..., z4, where
h,, = {valy,, M, }.

The data data; generated at D; and the attestation re-
sults h,,,...,h,, are authenticated with a digital signature
o; generated by D;’s secret key sk;. D; then sends the
authenticated data back to D;. Finally, D; verifies o;. It then
verifies the integrity of data;, by checking the control-flow
integrity of all critical tasks on data; (verifyCFP). verifyCFP
checks whether the executed edges comply to the CFG in
order to detect code-reuse attacks, and to a set of predefined
policies, e.g., whether the execution of loops is within a
certain range or executed privileged function was intended.
If all checks succeed, D; concludes that data; is generated
correctly (fEinalCheck + 1).

C. DIAT for Autonomous Networks

Collaboration in an autonomous network may involve inter-
action between two or more devices. Collaborations involving
more than two devices can be secured by running interact (in-
troduced under Section [[V-B) recursively between interacting
devices. This recursive version is referred to as interact+. An

Device D; CFGy,..., CFG., pk;

N ep {0,1}V

sk; | Device D;

N, req
data; + exec(code)
{x1,...,24} + DFMonitor()
{hzy,..., hy,} « CFMonitor()
25 +hay ... [|hay
data;; 2j;0; o < sign(skj; 2;||data;|N)

if verify(pk;; 2j||data; || N, o) then
if verifyCFP({hz, ,...,hz, }, {CFG1,...,CFG:}) then
finalCheck + 1

end if

8 end if

end if

Figure 4: Protocol interact

example of collaboration involving multiple devices is truck
platooning, where a device may need to recursively verify the
position data of all trucks ahead of it. The main difference
to interact is that in interact+ exchanged data is augmented
with control-flow attestation results of all critical modules on
every device that was involved in that collaboration. In more
details:
e When a device D; receives data request from D, it sends
a new request to other devices which are supposed to
participate in the interaction.
e D; collects the attestation results of other devices and
send them together with its own attestation result to D;.
« By verifying all the attestation results, D; is ensured that
all the data from all participating devices were generated
correctly.

V. IMPLEMENTATION

In this section, we detail our implementation of DIAT on
the PX4 — an open-source flight controller used for many com-
mercial drones. We first present our implementation platform
in Section [V-A] Then, in Section [V-B|we provide details of our
implementation, i.e., we elaborate on the implementation of
DFMonitor and CFMonitor and their integration within PX4.

A. Implementation Platform

Flight Controller (PX4). We implemented DIAT based on
PX4, an autopilot softwaIeE] designed for resource-constrained
autonomous aircrafts. PX4 is a modern and well-designed
software which is widely used in academic and industrial
projects. As depicted in Figure[5} PX4 consists of two software
layers: flight stack and middleware. The flight stack provides
the functionalities that are necessary for controlling an aircraft,
such as navigation, position estimation, and servo motor con-
trol. These functionalities are divided into software modules
communicating with each other through the middleware using
a message distribution system. The middleware consists of

5An autopilot is a software that is responsible for controlling an aircraft
and keeping it stable.

Flight Stack
‘ Module 1 ’ ‘ Module 2 ’ ‘ Module 3 ’
T 7
gpuu : i pull
e ey push
Middleware
MAVLink UORB | ’
| NuttX |
----- > Messagel —>Message2 =P Dataflow

Figure 5: PX4 Architecture

two main componentsﬂ a lightweight Object Request Broker
(uORB) and Micro Air Vehicle Link (MAVLink). We will
elaborate on uORB and MAVLink in Section

RTOS (NuttX). Embedded real-time systems are constrained
in processing power. Further, they are expected to fulfill
strict timing requirements. These impose high demands on
scheduling and resource management tasks. The common
approach to fulfill these requirements is to deploy a real-
time operating system (RTOS) ensuring the compliance with
these demands. The RTOS used primarily together with PX4 is
NuttX. The RTOS is not part of DTAT’s TCB. Since modules
are isolated by the underlying security architecture, the RTOS
cannot modify a module’s state and hence does not need to
be trusted.

Device Security Architecture. DIAT can be implemented
adopting different underlying security architecture, for in-
stance, TYTAN [7] or TrustZone-M. The processor of our
prototype platform does not provide a lightweight hardware
security platform. We elaborate on how these security archi-
tectures can be used with DIAT in Section

6Middleware includes further components, e.g. a simulation layer, which
are not relevant in this work.

B. Implementation Details

DIAT enables the verification of the state and the control-
flow of modules involved in the computation of exchanged
data. As described in our design includes two
main component. (1) DFMonitor that traces the data-flow in
the system and activates attestation for relevant modules, and
(2) CFMonitor that records the control-flow of these modules.
In this section, we describe both components in detail and
outline how we integrated them into PX4 autopilot software.

DIAT is a generic solution applicable to embedded systems
that satisfy the requirements introduced in Section Our
prototype implementation is based on the popular open source
flight controller for drones — PX4. Our implementation of
CFMonitor is platform-agnostic; it can be used for all ARM-
based systems. The implementation of DFMonitor can be
adjusted and integrated into other systems with minimal effort.

For the remainder of this section, we use attestation report
to refer to the proof of paths executed by critical modules.
The data for which an attestation report is generated is
referred to as attested data and the process of generating
an attestation report is called attestation. In order to acquire
attested data, the verifier sends an attestation request to a
device that generates this data. An attestation report is verified
by confirming that it reflects legitimate execution paths for
all modules that processed the attested data. We refer to this
process as verification.

1) DFMonitor: In DIAT the data-flow monitor
(DFMonitor) is a trusted software component, which observes
the data exchanged between software modules and, based on
this information, identifies the critical modules for different
computations (see [Section IMI). To achieve this goal, the main
demand on DFMonitor is to maintain a comprehensive record
of the data exchanged in the system. In PX4 the messaging
system (uORB) is the only communication channel between
software modules, and hence, it is able to create and
continuously update the model of the system’s entire
information exchange. In DIAT, we have extended uORB
with new functionalities. We refer to the extended version as
DFMonitor. In the following, we first introduce the internal
(uORB) and external (MAVLink) communication components
of PX4. Afterward, we describe the functionalities added
to uORB. Specifically the adaptations required to enable
(1) receiving attestation requests, (2) identifying module
dependencies to determine the critical modules for sensitive
data, (3) activating CFMonitor for critical modules, and
(4) discarding buffered data.

PX4 Communication Components. To realize efficient com-
munication among modules and to external entities while pro-
viding a flexible and well-designed software architecture PX4
leverages two software components: uORB and MAVLink.
uORB is a software component offering a messaging API used
by software modules for communication on the device. This
component provides the functionality for sending/receiving
predefined messages using a publish/subscribe scheme. In
order to send a message, a software module is required to

register itself with uORB as a publisher of that message type
and use the corresponding functionality to send messages.
Similarly, to receive a specific message type a software module
needs to register itself with uORB as a subscriber. When a
message is sent, UORB notifies all subscribers of that message
type. MAVLink (Micro Air Vehicle Link) is the implemen-
tation of a same-named and highly efficient communication
protocol for unmanned vehicles. In PX4, MAVLink is used for
communicating with the external entities (e.g., other drones or
the ground control system). Further, MAVLink integrates with
uORB to provide the possibility to forward messages from the
flight stack to external entities and vice versa.

Attestation Requests. To enable DIAT to receive attestation
requests we extended the MAVLink message format with a
flag, which indicates if requested data is considered sensitive
and therefore, the process of generating this data is to be
attested. DTAT handles an attestation request by including the
corresponding attestation report in the response. For example,
an attestation request for GPS data is handled by including the
GPS data together with the corresponding attestation report in
the response.

Identification of Module Dependencies. In DIAT,
Module 1 depends on module Module 2, if
(1) Module 1 receives a message from Module 2,
or (2) there is a transitive dependency between these modules
(Module 1 depends on Module 3 which depends on
Module 2). DIAT maintains the module-dependency
model dynamically. This is enabled by the fact that in DIAT
the software modules communicate over a well-defined
channel. This requirement enables updating the dependency
model even if new software modules are added to the system
at run-time.

Buffered Data. PX4’s messaging system is asynchronous.
This means that messages are not sent on request by a receiver
but a sender sends messages whenever data is available. Sent
messages are buffered in queues and delivered to receivers
at a later point in time. This behavior leads to a problem in
attesting data when buffered data are used which have been
generated before the attestation process is started. This would
mean that the control-flow of involved modules has not been
monitored and therefore the correct run-time behavior of those
modules is not verifiable. To avoid this problem, we have
added the functionality to flush existing values from the uORB.
At the beginning of an attestation process, this functionality
is used to discard the buffered values. Therefore, the required
data have to be (re)generated when the attestation is active and
the control-flow of involved modules is recorded. This enables
the verification of their run-time behavior.

2) CFMonitor: CFMonitor is a trusted component which
records the control-flow within software modules. The com-
mon approach, which enables the control-flow recording is
code instrumentation. In this work, instrumentation means
modifying a software module to enforce the recording of its
execution path, i.e., the module is extended such that it uses
the functionality of CFMonitor to record its own execution

path.

Instrumentation. In DIAT, instrumentation enables the
recording of the execution path by tracing integrity-relevant
control-flow events which are executed at run-time. An
integrity-relevant control-flow event refers to an instruction
which transfers the flow of the program’s execution from the
current address to an address which is determined at run-time.
The reason for this distinction is that only these events can
be exploited by run-time attacks. This approach enables us to
precisely and efficiently represent the behavior of a software
module at run-time. Our instrumentation is performed in the
build process of PX4 where the following modifications are
applied to the code in assembly form:

o A unique ID is assigned to each software module. This
ID is used to identify software modules at run-time.

o A dispatch instruction is inserted before each integrity-
relevant control-flow event. This instruction redirects
the program flow to the CFMonitor. Further, the dis-
patch instruction passes the following arguments to the
CFMonitor: (1) the ID of the software module; (2) the
source address of the control-flow event; and (3) the
destination address of the control-flow event.

Recording execution path. The main part of CFMonitor is a
logic which records control-flow events and adds them to the
execution path of the corresponding module. The execution
path of every critical module is stored in a separate data
structure. Since parallel execution of processes is a common
feature in embedded systems, it is required that CFMonitor
records the control-flow events atomically to avoid race con-
ditions and prevent the untrusted OS from interfering with the
process of recording the control-flow path. To achieve this,
we disable the interrupts for a very short time period upon
entering this procedure and enable them before the control-
flow is transferred back to the software module. To ensure
the compliance with the real-time requirements special care is
taken so that the code which is executed as the interrupts are
disabled (1) is minimal and (2) has a bounded execution time
(i.e., the time required for storing a control-flow event in an
internal buffer).

Figure [6] depicts how CFMonitor works. CFMonitor in-
cludes three data structures: (1) Critical modules: the list of
software modules involved in the current attestation; (2) MSHV
table: the table which stores the MSH-values of the critical
modules; and (3) Path table which contains multisets of
control-flow events. Each multiset represents the execution
path of a critical module. For instance, the execution path
of Module 1 is represented by a multiset including four
elements. This multiset shows that the control-flow event
el is executed once in the Module 1 (indicated by <el,
I>). As described in Section the critical modules are
determined by DFMonitor. As these modules run, the dispatch
instructions within each module forward the module ID and
for each control-flow event the source and the destination
address to CFMonitor. If the module ID belongs to a critical
module, CFMonitor uses the received information to update

el e5

CFMonitor

module-ID, start, end

Input CF-event
1

3

mshvl

[critical Modules ID | MSHV
N >
mshv3

{<el, 1>, <e2, 10>,
<e3, 10>, <e4, 1>}

Ss
R
Update MSH-Value
Update Path ot Pl

— Control flow

{<e5, 1>, <eb, 1>, <e7, 1>}

«+=» Data flow

Figure 6: CFMonitor Logic

the MSH-value and the execution path of the corresponding
module. After the system has generated the requested data, the
multiset hashes and the execution paths are used to generate
the corresponding attestation report.

Our representation of execution path allows us to: (1) re-
duce the size of attestation report as we only count control-
flow events rather than storing the whole execution path. In
particular, for each control-flow event, we only need to specify
how often it is executed instead of including it in the path as
many times as it is executed. and (2) significantly reduce the
amount of required secure memory, as we only need to store
the MSH-value in the secure memory.

Integration into PX4 Autopilot Software. Figure [/| shows
the concept of DIAT and how it is integrated into the PX4
autopilot software. Software modules communicate with each
other using the functionality offered by uORB. CFMonitor
records the information (CF Data) about control-flow events
executed in critical software modules, which are identified
by DFMonitor. To allow this integration, the following to
components are required:

o Filter is the part of DFMonitor that authorizes the in-
coming messages/requests. This functionality is required,
since MAVLink allows sending unauthorized control mes-
sages to a device that modify the device’s internal state
(e.g. the current GPS coordinates). In our system, Filter
rejects messages of this kind.

o Quoter is a component with exclusive access to the
device’s secret key and is responsible for authenticating
the generated attestation reports.

VI. PERFORMANCE EVALUATION

We now present our evaluation results for DIAT. First
we provide microbenchmarks for the Multiset Hash (MSH)
function. Afterwards, we evaluate attestation and verification
costs for individual software modules. Finally, we provide
simulation results demonstrating DIAT’s scalability for large
networks. Our evaluation is based on a popular flight controller

Flight Stack
Module 1 Module 2 Module 3 Module 4
[| ¥ [y
1 T t
MAVLink DFMonitor CFMonitor
JORE . el
Request Filter }J Quoter *
Respor -

| |

""" + Message Transfer — CF Data =P Data flow

Figure 7: DIAT Implementation

for drones — Pixhawkﬂ Pixhawk is an open source hardware
project providing a Cortex M4F CPU (up to 168 MHz),
256 KB of RAM, and 2 MB of Flash Memory. We use the
Pixhawk hardware board in conjunction with PX4 software
stack on top of the NuttX Real-time OS (RTOS). We discuss
the performance impact of lightweight hardware security ar-
chitectures in Section

A. Multiset Hash-Function

Before evaluating the performance of DIAT, we first show
the evaluation results of our implementation of the additive
MSH in comparison to the Blake2 hash function, which
is used in existing control-flow attestation [ZJH The goal
is to understand the impact of using MSH on the overall
performance of DIAT. Table [shows the execution times for
the individual phases of both hash functions.

Table I: Performance of Hash functions

Function MSH (ps) Blake2 Hash (ps)
Initialize 46 8
Update 37 1
Finalize 2 22

When considering the run-time of the hash function inde-
pendent of the overall attestation scheme, it is easy to see
that a conventional hash function outperforms MSH. However,
the use of MSH provides DIAT with several advantages that
makes it outperform existing control-flow attestation proto-
cols [2], [14].

When a conventional hash is used, the execution path has to
be hashed either (1) in parallel to the computation or (2) when
the computation is finished. In the first case, which is the
approach used by existing control-flow attestation [2f], the
verification overhead is extremely high. In this scenario, the
verifier is required to have access to a database, which contains
a hash value for every valid execution path of the prover and
the verification process involves a search over this database.
This is not feasible for embedded systems.

7 https://pixhawk.org
8 https://blake2.net

10

One variation of this approach is to reduce the verification
overhead by sending the authenticated hash value together with
the entire execution path to the verifier. In this approach, the
verification process would involve the recalculation of the hash
value and comparing it with the reference value received from
the prover. However, this approach causes an unacceptable
communication overhead. For example, the execution path for
the critical modules for GPS data verification includes 22249
edges, as we will elaborate in the subsequent section. If each
edge is represented by two addresses (source and destination),
a total amount of ca. 178 KB needs to be transferred, i.e.,
total size = path length (22249) - 8 Bytes (4 Bytes for source
address and 4 Bytes for destination address). Using MSH
this execution path can be represented as a multiset of edges
that includes the number of appearance of each edge in the
path. Since the execution path includes 173 different edges,
this mutliset can be represented by 2.8 KB, i.e., total size =
number of edges (173) - 16 Bytes (8 Bytes for the edge +
8 Bytes for the count). This represents an improvement of ca.
98% in communication overhead.

Calculating the hash after the computation makes it possible
to compress the execution path. However, in this approach
(1) a large amount of secure memory is required to store the
complete path, and (2) the calculation of hashes cannot be
performed in parallel (e.g. using a dedicated coprocessor) [14].

B. Modular Attestation

1) Attestation and verification: In this section, we show the
performance of DIAT in terms of the overhead for generating
and verifying attestation reports for a specific sensitive data,
i.e., GPS coordinates. The results of our evaluations are shown
in Table

Table [T shows the 13 software modules that are typically
running on the Pixhawk in the time frame that is needed
to generate new GPS coordinates on a drone. For each of
these modules, the table also shows (1) the CFG size, (2) the
length of the execution path that was actually taken, (3) the
required time for generating the attestation report, and (4) the
verification time of the attestation report. Out of these 13
modules only the GPS module is involved in generating GPS
coordinates and is therefore the only module that needs to be
included in the attestation report for GPS coordinates. Hence,
the time required for attesting and verifying GPS coordinates
with DIAT is equal to the attestation and verification time
of the GPS module shown in the first row of Table [
Using existing attestation schemes [2]], [14]], attesting GPS
coordinates requires generating and verifying an attestation
report for all 13 executed modules. Additionally, the NuttX
RTOS must also be attested in existing schemes, which would
add significant overhead. A simple comparison of attestation
overhead with and without DIAT’s modular attestation (i.e.,
only GPS vs. all 13 components) shows that DIAT’s mod-
ular attestation entails an improvement of at least 95%. A
numerical comparison between DIAT and existing schemes,
like C-FLAT [2] and LO-FAT [14], is not possible due to
the lack of verifier performance evaluation provided by these

https://pixhawk.org
https://blake2.net

works. These schemes consider the problem of verification to
be out of scope and assume a very powerful verifier that has
comprehensive information about all possible execution paths.
Their verification overhead is exponential in the size of the
CFG while the verification overhead in DIAT is linear (see
the last column in Table [[).

Table II: Performance of DIAT on Pixhawk

Module CFG Exe Path Attestation (ms) Verification(ms)
GPS 2922 22249 835 849
Gyroscope 912 20004 748 760
e-Compass 1468 18907 716 718
IMU Sensor 1905 158671 6341 6357
Pressure Sensor 1051 1150 46 46
FMU 1828 38132 1510 1511
PX410 3661 12723 484 489
LED Driver 532 32 1 1
STM32 ADC 251 21274 805 808
Commander 7852 9418 354 365
Load Monitor 135 8 0.3 0.4
Sensors 2032 40410 1618 1623
Systemlib 2555 662142 26341 26365
Total 27014 1005120 39799, 3 39892, 4

2) Number of Attested Modules: GPS data represents an
extreme case where only a single module generates and
processes the data. In order to investigate the effect of modular
attestation on the overall performance gain, we evaluated
DIAT with data that is generated and processed by multiple
modules. Table shows the savings of DIAT for different
data. It compares the modules that were in general executing
on the device while the data was generated and processed
(Executed Modules) against the subset of modules that did
actually process the data (Critical Modules). It lists for both
sets the (1) number of these modules (Count), (2) total CFG
size (sum of CFGs of all modules — > CFGs), and (3) total
length of execution paths (3 Executed Paths).

The results show that for generating, for instance, sen-
sor_gyro data eight modules are executed, two of which are
critical (25%). Further, the total length of execution paths of
critical modules is 2817 which represents 20% of the total
length of execution paths in all executed modules (13873).
The percentages shown in this table reflect the positive impact
of modular attestation.

C. Network Simulations

We used network simulation to further investigate the im-
pact of DIAT on collaborations involving a large number
of devices. We simulated DIAT using the OMNeT++ [31]]
network simulator. DIAT was implemented at the application
layer and the simulation parameters (e.g. different delays) were
set based on real measurements we made on the Pixhawk
board. The communications rate for links between devices
was set to 250 Kbps, which is the actual data rate provided
by NodeMCUﬂ — an ultra-low power WiFi module commonly

9 http://nodemcu.com/index_en.html

11

used for communication between drones.

We simulated three possible collaboration scenarios: (1) Se-
rial collaboration, where devices sequentially execute their
roles in a collaboration; (2) Parallel collaboration, where all
devices execute their roles in parallel; and (3) Hybrid collabo-
ration, where devices collaborate both serially and in parallel.
Serial and parallel collaboration represent two extreme cases,
while hybrid collaboration falls in the middle. We varied the
number of devices involved in the collaboration from ten to
10,000 devices.

The simulated collaboration involved multiple devices gen-
erating and exchanging GPS positions. For each collaboration
scenario (serial, parallel and hybrid) we simulated three cases:
the first case provides the baseline for our evaluation with
no security measures deployed; the second case deploys the
basic integrity protection for data during transmission, i.e.,
authenticating messages based on ECDSA; and in the third
case DIAT was used to protect the integrity of data by attesting
their generation and processing.

We make the following observations regarding the run-time
of different collaboration scenarios:

Serial Collaboration. The run-time is linear in the number
of devices involved in all three collaboration scenarios. This
is caused by the sequential exchange and processing of data
(and consequently sequential data exchange, authentication
and attestation).

Parallel Collaboration. The run-time is constant in the num-
ber of devices involved when no security is deployed, since all
communication and processing is done in parallel. The run-
time is linear in the number of participating devices in the
two other cases where messages are authenticated, and data
integrity is provided by DIAT, respectively.

Hybrid Collaboration. The run-time is logarithmic in the
number of devices involved in all three cases. This is due to
the distribution of the communication, processing, attestation,
and verification burden across the network.

Summary. DIAT incurs around 400% overhead over regular
authentication in both sequential and hybrid collaboration sce-
narios. However, DIAT does provide much stronger security
guarantees compared to simple authentication of data.

In comparison to existing control-flow attestation
schemes [2], [14] DIAT has higher run-time overhead
on the prover side. This is due to the use of the more
expensive hash function (i.e., MSH [12]]). However, due
to our modular decomposition, DIAT is applicable to
autonomous devices with complex software (e.g., drones)
without impairing the functionality of the devices or incurring
noticeable delays. Also, the performance on the prover side
can be significantly improved using hardware acceleration
engines, as demonstrated before [14].

On the other hand, the use of MSH allows efficient ver-
ification of control-flow paths, which is paramount for col-
laborative autonomous systems where embedded devices have
to act as both prover and verifier. This was not possible using
previously proposed control-flow attestation schemes [2]], [14].

http://nodemcu.com/index_en.html

Table III: Critical modules

vs. executed modules

Data cmd_state battery_status sensor_accel Sensor_gyro
Critical Modules 12 12 2 2

Count Executed Modules 12 13 7 8
Percentage 100% 92% 28% 25%
Critical Modules 197823 46860778 194 250

¥ CFGs Executed Modules 197823 46862156 1590 1328
Percentage 100% 99% 12% 18%
Critical Modules 26572 26572 3373 2817

3 Executed Paths Executed Modules 26572 27104 13622 13873
Percentage 100% 98% 24% 20%

D. Drones Demonstrator

To demonstrate the feasibility of control-flow attestation
for collaborating autonomous networks we implemented a
demonstration showing multiple drones flying in formation.
The coordination between drones is based on the exchange
of GPS data. Each drone attests the control-flow of the code
executed on other drones. The demo shows the applicability
of our control-flow attestation to systems with strict real-time
requirements. Our autonomous drones systems is flying and
collaborating without any problems or noticeable delays. The
video of the demonstration is available online[™]

VII. SECURITY CONSIDERATION

DIAT ensures the integrity of data exchanged in a col-
laborative autonomous system. In this section, we will show
that DIAT fulfills all security requirements identified in Sec-
tion An adversary aiming to violate DIAT’s security
guarantees can manipulate sensitive data in three different
phases: (1) while the data is generated or initially sensed by
the platform’s hardware, (2) while the data is processed on the
platform, and (3) when the data is transferred to the verifier.

A. Off-Device Security

Spurious sensor data constitute an orthogonal problem,
DIAT relies on the correctness of the initial data. While the
data is transferred to the verifier the data is protected by
cryptographic means, i.e., data is digitally signed by a key
only accessible to the prover’s trusted computing based (TCB).
Hence, the adversary cannot manipulate the data without being
detected as he cannot generate a valid signature for altered
data. This means that DIAT fulfills the security requirement
for data integrity and authentication during transportation, as
identified in Section

B. On-Device Security

To ensure data integrity on the platform itself DIAT has
to counter a number of attack vectors and strategies. The
attacker can target (1) DFMonitor or CFMonitor, (2) a module
that is not processing sensitive data, and (3) a module that is
processing sensitive dataE] (4) The attacker can aim to exploit

10 https://youtu.be/tI7TdkWdQ3j A

For sake of lucidity we concentrate on an attacker targeting a single
module, extending the security arguments to multiple modules is straight
forward.

12

dynamic data dependencies and try to inject “untrusted” data
into the processing of sensitive data.

1) Control-flow and data-flow monitor: constitute the
trusted computing base (TCB) of DIAT. Our TCB is assumed
to be immune to attacks, as described in Section DIAT’s
platform security architecture (Section ensures the iso-
lation of CFMonitor and DFMonitor as well as their initial
integrity by means of secure boot.

2) Non-critical modules: are by definition not relevant for
the integrity of sensitive data, therefore any compromise of a
non-critical module does not give the attacker any advantage
towards the goal of compromising the integrity of sensitive
data.

3) Critical modules: can be subject to a number of attacks:
Code integrity. The attacker can aim at manipulating the code
of a module either before the module is loaded or at runtime.
Manipulation of a module before load-time is detected by the
static attestation that is performed for every module when it
is loaded. At runtime, the module’s code is protected by the
isolation provided by the security architecture. Therefore, the
attack can only manipulate the code from within the module,
i.e., by techniques like code injection. However, these attacks
are prevented by data execution prevention (DEP), which
eliminates the possibility to insert new code as well as the
option to alter or overwrite existing code. Hence, the code
integrity of DIAT’s modules is ensured and the requirement
for code integrity on device is fulfilled.

Module data integrity. The integrity of a module’s data is
crucial for the correct operation of the module, i.e., that the
module is processing sensitive input data correctly.

Different types of run-time attacks modify different data
and have different effects on the control-flow as described
in Section [[I-A] Control-data attacks, like Return-Oriented
Programming (ROP) [34], directly influence the control flow
of module’s code and introduce new control-flow edges in the
executed control-flow path. DIAT’s CFMonitor captures all
control-flow transitions executed in a module while processing
sensitive data. This information is provided to the verifier who
can easily check whether all executed transitions — independent
of the order in which they were executed — are legitimate, by
checking if they are contained in the module’s Control-Flow
Graph (CFG).

Non-control data attacks do not introduce control-flow edges
outside of the CFG in a module’s execution path. The class of

https://youtu.be/tI7dkWdQ3jA

non-control data attacks can be divided into two sub-classes,
(1) attacks that do influence a module’s execution path [L1]],
[20], and (2) attacks that leave the execution path completely
unchanged.

Existing DOP attacks, which fall into the first sub-class,
are often target-specific and aim to achieve the execution of
program functionality that is restricted, i.e., should not be
available in the given execution context [11]]. DIAT can detect
these types of attacks, given sufficient context information on
the verifier side. In particular, DIAT’s Multiset Hash (MSH)
representation does reveal to the verifier whether a restricted
control-flow path was executed in a module. More general
are DOP attacks that provide the attacker full control over a
target program’s operation, i.e., DOP attacks achieving Turing-
completeness [20]. These attacks combine multiple instruction
sequences, called data-oriented gadgets, which are chained
together using a dispatcher gadget. The dispatcher gadget is a
loop (or loop-like construction) that has to be iterated through
repetitively. This unexpected count of iterations can be easily
detected by the verifier in DIAT’s control-flow report, despite
the loss of order information due to its constant size MSH
representation.

DOP attacks from the second sub-class neither execute an
unexpected path in a module’s CFG nor execute transitions
(e.g., of loops) atypically often. These attacks are currently
not detectable with DIAT. For instance, attacks that modify
the values of variables that are used in calculations. In general,
non-control data attacks are subject to active research and no
generic detection policy for these attacks existed at the time
of writing. However, DIAT can be adapted and extended with
new detection policies on the verifier side if they are developed
in the future.

4) Data dependencies: The integrity of sensitive data is
dependent on the operation applied to it, i.e., the correct
operation of the modules processing it, as well as other
data involved in its processing. An attacker could aim at
manipulating data that is eventually integrated into sensitive
data. In general, DIAT uses dynamic control-flow tracing to
determine which modules provide input to the processing of
sensitive data and considers those input data sensitive as well.

In particular, if some module processes sensitive data and
receives or requests input data, its input is considered sensitive.
Therefore, Module 1 providing this input data has to be
monitored. If Module 1 is producing the input data “on-
demand” its monitoring can be activated before the sensitive
data is produced, i.e., the integrity of the input data can be
verified. However, for data that has been produced at an
earlier point in time no information is available about the
correct creation of the data. DIAT addresses this problem
by ensuring that all inputs for generating a sensitive data are
generated on-demand, i.e., DTAT provides transitive verifiable
data generation and processing.

In our prototype implementation (Section [V)) modules that
produce data on-demand would publish their results for use
by other modules. In case that a critical module Module 2
requires such data, the buffer of already published results is

flushed and the monitoring of Module 1 is started while
it is generating new results. Module 2 can then use the
new results which were generated by Module 1 while being
monitored, i.e., the correctness of Module 1’s results is
verifiable.

DIAT’s transitive verifiability of data integrity fulfills the
requirement for data integrity on device as identified in Sec-

tion [[I=Bl

VIII. DISCUSSION

In order to fulfill the requirements listed under Section [[I-B
and achieve its security goals, DIAT places the following
four requirements on the underlying security architecture:
(1) secure storage, (2) support for secure boot, (3) isolation
of software modules, and (4) secure Inter-Process Commu-
nication (IPC). In this section, we introduce two security
architectures, one from academia and one from industry, and
show that the requirements of DIAT can be fulfilled by either
of these architecture.

A. TYTAN

Tiny Trust Anchor for Tiny Devices (TyTAN)[7] is a hard-
ware/software co-design which enables strong hardware-based
memory isolation for embedded systems. TyTAN has low
complexity and is highly flexible. It is designed to be deployed
in low-end embedded systems with real-time requirements.
In order to isolate the software components from each other,
TyTAN deploys an execution-aware memory protection unit
(EA-MPU) [24]]. EA-MPU validates memory accesses based
on (1) the memory address being accessed and (2) the address
of the instruction currently being executed. In TyTAN, the
access control rules can be updated dynamically. This feature
enables the security critical software modules to be loaded and
unloaded at run-time. Further, TYTAN enables the interruption
of (isolated) software modules without information leakage.
In particular, to securely process an interrupt, the module’s
state is stored in a protected region and the CPU registers
are cleared before the execution is passed to the untrusted
interrupt handler. TYTAN has a minimal Trusted Computing
Base (TCB). In particular, the operating system is not included
in the TCB. Finally, the integrity of TyTAN’s TCB is ensured
through secure boot.

TyTAN fulfills DIAT’s requirements on the security archi-
tecture as follows:

o Secure storage: TYTAN enables the derivation of storage
encryption keys from the protected platform key, aka
sealing.

o Secure boot: TyTAN provides secure boot as part of its
architecture.

o Software module isolation: Providing isolation of soft-
ware modules is the main goal of TyTAN and is imple-
mented based on the EA-MPU.

o Secure IPC: TyTAN provides a mechanism for secure
IPC.

TyTAN performance. The overhead caused by TyTAN on the
system performance is minimal, as reported by the authors [7]].

TyTAN was evaluated with regard to different system tasks, in
particular, creating a secure task, measuring a task, and saving
and restoring the context of a taskE] TyTAN incurs overhead
when creating a new task, however, when the system is running
the only overhead of TyTAN stems from the secure context
switch between isolated modules. The evaluation shows that
the overhead for secure context switches is minimal, it is
basically one additional jump instruction plus wiping out CPU
registers.

B. TrustZone-M

The term TrustZone-M is widely used to refer to the Armv§-
M Security Extension. Armv8-M specifies the 8-th generation
of ARM processors designed for deeply embedded systems —
postfix M for Microcontroller. The security extension presents
a set of optional instructions with the purpose of providing a
strong hardware based isolation mechanism. In a system with
TrustZone-M, the processor is either in secure state or non-
secure state. Further, system resources, €.g. memory areas,
are assigned to one of these security states. If a resource is
assigned to the secure state, it can only be accessed if the
processor is in the secure state. In each security state, there
are two execution modes: (1) thread mode and (2) handler
mode. While user applications are executed in thread mode,
tasks such as exception handling and resource management
are performed in handler mode. A system with TrustZone
feature starts up in the secure state. The secure state software
performs optional security checks, e.g., integrity check of the
non-secure state software, before the execution is transferred
to the non-secure state. Changing the processor’s security
state takes place according to strict rules, which — together
with techniques such as register/exception banking — prevent
information leakage from the secure state to the non-secure
state.

TrustZone-M fulfills DIAT’s requirements on the security
architecture as follows:

o Secure storage: Using the platform key, which is exclu-
sively accessible by trusted secure state software, storage
encryption keys for each module can be derived enabling
secure storage.

Secure boot: TrustZone-M starts in the secure state and
provides secure boot for the secure state software.
Software module isolation: Software modules can be
isolated by updating the memory access control policy
(stored in and enforced by the memory protection unit
MPU) on every context switch leveraging a small trusted
management software, which it protected in the secure
state.

Secure IPC: Shared secure memory between software
modules and DFMonitor can be used for IPC. Similar to
module isolation, shared memory between modules can
be managed by a small software component, which is
protected in the secure state.

12For details of the evaluation please refer to the original paper [[7].

14

IX. RELATED WORK

Static Device Attestation. Attestation schemes fall into three
main categories: (1) Software-based attestation [33]], [L8]], [26]]
which — under some strict assumptions — enables attestation
for legacy and low-end embedded devices, as it requires no
secure hardware and does not rely on cryptographic secrets;
(2) Coprocessor based attestation schemes [25], [27]], which
are based on complex and/or expensive security hardware
(e.g., TPM); low-end embedded devices; and (3) Hybrid
schemes [[16l], [24], which aim at minimizing the hardware se-
curity features required for enabling secure remote attestation.
Such security features can be as simple as a read only memory
(ROM), and a simple memory protection unit (MPU). DIAT
can be built on top of the same minimal hardware support
providing security against run-time attacks and applicability
to emerging autonomous systems.

Noorman et. al. describe a system architecture and pro-
gramming model that enforces data-flow between protected
modules on distributed embedded devices [30]. Their approach
used attestation to provision the modules with secret data
which is used to later authenticate the interaction of the
modules. Unlike our work they do not consider run-time
attacks on the software modules. Also, their approach statically
defines legitimate data-flows at compile-time, while DIAT
dynamically tracks data-flows.

Collective Attestation. Collective attestation [S], [6], [21],
[22] enables scalable static attestation of large groups of
interconnected devices. It was first proposed by SEDA [6].
SEDA extends the software-only attacker assumed by most
single-prover attestation schemes to, so-called device swarms.
It exploits minimal security hardware to enable neighbors’ ver-
ification and secure hop-by-hop aggregation, thus, achieving
scalability through the distribution of the attestation burden
across the whole network. SANA [5] extends SEDA with a
novel aggregate signature scheme, which enables low verifica-
tion overhead while requiring minimal trust anchor only for the
attested devices. Finally, DARPA [21]] builds on top of SEDA
to enable security under a stronger adversary model based
on absence detection and periodic heartbeats. Unlike existing
techniques, DIAT allows efficient control-flow attestation (see
below) in autonomous collaborative systems. It enables every
collaborating devices to verify the integrity of all exchanged
data.

Control-flow Attestation. Several schemes for control-flow
attestation have been recently proposed [2], [14], [36], [15]: C-
FLAT [2]] enables a prover to attest the exact control-flow path
of an executed program to a remote verifier. However, C-FLAT
is not scalable and poses high verification overhead on the ver-
ifier. Hence, it cannot be simply combined with existing col-
lective attestation techniques. DIAT is an efficiently verifiable
control-flow attestation protocol which enables collective at-
testation of autonomous systems. To improve the performance
of C-FLAT on the prover, LO-FAT [14] was developed. LO-
FAT leverages hardware assistance to track control-flow events
and performs hash calculations parallel to program execution.

Moreover, LO-FAT supports control-flow attestation of legacy
code since binary instrumentation is not required. However,
LO-FAT also induces a high overhead on the verifier and is
not applicable to autonomous systems. DIAT can leverage
hardware assistance described by LO-FAT to further reduce
the overhead on the prover in an autonomous system. Finally,
control-flow attestation is capable of detecting run-time attacks
that are not detectable by control-flow integrity (CFI). It also
allows safe reactions to attacks, which is particularly important
in autonomous systems.

Data Integrity. Data-Flow Integrity (DFI) [8] aims at pre-
venting run-time attacks by preserving the integrity of the
data of a vulnerable program, e.g., buffers and strings. DFI
is based on generating a Data-flow Graph (DFG) based on
static analysis and ensuring that data flow of the program
complies with its DFG at run-time. Much of research has
been conducted aiming to ensure the integrity of a program’s
data at run-time by enforcing memory safety for programming
languages [23l], [29], exploiting dynamic tainting [13], [10]
or applying bound checking [32], [35]. The common goal
of existing approaches is to detect run-time attacks such as
control-flow attacks and data-only attacks. Unfortunately, these
solutions have large overhead, require porting entire programs
to different languages, incur a large false positives rate, or are
not capable of detecting all kinds of run-time attacks. More
importantly, such enforcement techniques are not applicable
to safety-critical real-time systems. DIAT preserves the in-
tegrity of data generated by a program/device by ensuring
the detection of a large number of run-time attacks based on
means of control-flow attestation. It has a low overhead and
it follows the attestation paradigm which allows safe reaction
to attacks’ detection. To summarize, the purpose of DIAT is
not to enforce DFI, but rather to ensure integrity of input data,
which seems more realistic in practice.

X. CONCLUSION

In this work, we present DIAT — a control-flow attestation
scheme for autonomous collaborative systems. DIAT com-
bines three novel building blocks: data integrity attestation,
modular attestation, and novel representation of execution
paths. We assemble these building blocks to enable efficient
run-time attestation in a setting where embedded systems must
act as both, prover and verifier. We demonstrated DIAT’s
applicability to real embedded systems with strict real-time
constraints by implementing and evaluating it on a state-of-
the-art flight controller for drones. In future work we aim at
further improving the performance of DIAT in order to allow
its application to more restricted real-time settings. We are also
working on exploring advanced verification policies that will
allow verifier devices to detect sophisticated data-only attacks.

ACKNOWLEDGEMENTS

This research was co-funded by the German Science Foun-
dation, as part of project S2 within CRC 1119 CROSSING,
HWSec, and Intel Collaborative Research Institute for Collab-
orative Autonomous & Resilient Systems (ICRI-CARS).

15

[1]

[10]
(11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
(32]
[33]
[34]
[35]

(36]

REFERENCES

M. Abadi et al., “Control-flow integrity: Principles, implementations,
and applications,” ACM TISSEC '09, 2009.

T. Abera et al., “C-flat: Control-flow attestation for embedded systems
software,” in CCS 16, 2016.

T. N. Al-Otaiby et al., “Toward software requirements modularization
using hierarchical clustering techniques,” in ACM-SE 05, 2005.

E. Almentero et al., “Towards software modularization from require-
ments,” in SAC ’14, 2014.

M. Ambrosin et al., “SANA: Secure and Scalable Aggregate Network
Attestation,” in CCS, 2016.

N. Asokan et al., “Seda: Scalable embedded device attestation,” in ACM
CCS, 2015.

F. Brasser et al., “Tytan: Tiny trust anchor for tiny devices,” in DAC,
2015.

M. Castro et al., “Securing software by enforcing data-flow integrity,”
in OSDI *06, 2006.

S. Checkoway et al., “Return-oriented Programming Without Returns,”
in CCS 10, 2010.

S. Chen et al.,, “Defeating memory corruption attacks via pointer
taintedness detection,” in DSN 05, 2005.

, “Non-control-data attacks are realistic threats,” in USENIX ’05,
2005.

D. Clarke et al., Incremental Multiset Hash Functions and Their Appli-
cation to Memory Integrity Checking, 2003.

M. Costa et al., “Can we contain internet worms,” in HOTNETS 04,
2004.

G. Dessouky et al., “Lo-fat: Low-overhead control flow attestation in
hardware,” in DAC’17, 2017.

, “Litehax: Lightweight hardware-assisted attestation of program
execution,” in ICCAD ’18, 2018.

K. Eldefrawy et al., “SMART: Secure and minimal architecture for
(establishing a dynamic) root of trust,” in NDSS, 2012.

A. Francillon et al., “Code injection attacks on harvard-architecture
devices,” in CCS ’08, 2008.

R. Gardner et al., “Detecting code alteration by creating a temporary
memory bottleneck,” IEEE TIFS, 2009.

W. G. Griswold et al., “Modular software design with crosscutting
interfaces,” IEEE Software, 2006.

H. Hu et al., “Data-oriented programming: On the expressiveness of
non-control data attacks,” in IEEE S&P 16, 2016.

A. Ibrahim et al., “DARPA: Device Attestation Resilient against Physical
Attacks,” in WiSec, 2016.

, “Us-aid: Unattended scalable attestation of iot devices,” in SRDS
’18, 2018.

R. W. M. Jones et al., “Backwards-compatible bounds checking for
arrays and pointers in ¢ programs,” in HP Labs Tech Report, 1997.

P. Koeberl et al., “TrustLite: A security architecture for tiny embedded
devices,” in EuroSys, 2014.

X. Kovah et al., “New results for timing-based attestation,” in IEEE S&P
’12, 2012.

Y. Li et al., “VIPER: Verifying the integrity of peripherals’ firmware,”
in ACM CCS, 2011.

J. McCune et al., “TrustVisor: Efficient TCB reduction and attestation,”
in [EEE S&P ’10, 2010.

L. Meier et al., “Px4: A node-based multithreaded open source robotics
framework for deeply embedded platforms,” in ICRA ’15, 2015.

G. C. Necula et al., “Ccured: Type-safe retrofitting of legacy software,”
TOPLAS 05, 2005.

J. Noorman et al., “Authentic Execution of Distributed Event-Driven
Applications with a Small TCB,” in STM 17, 2017.

OpenSim Ltd., “OMNeT++ discrete event simulator,” | http://omnetpp.
org/.

O. Ruwase et al., “A practical dynamic buffer overflow detector,” in
NDSS '04, 2004.

A. Seshadri et al., “SAKE: Software attestation for key establishment
in sensor networks,” in DCOSS, 2008.

H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in CCS '07, 2007.

J. Yao, “Bcec: run-time checking for ¢ programs,” in USENIX STC 83,
1983.

S. Zeitouni et al., “Atrium: Runtime attestation resilient under memory
attacks,” in ICCAD ’17, 2017.

http://omnetpp.org/
http://omnetpp.org/

	Introduction
	System Model and Assumptions
	Adversary Model
	Requirements

	DIAT Design
	Challenges
	Architecture

	Protocol Description
	Multiset Hash Function
	DIAT for Two Devices D i and D j
	DIAT for Autonomous Networks

	Implementation
	Implementation Platform
	Implementation Details
	DFMonitor
	CFMonitor

	Performance Evaluation
	Multiset Hash-Function
	Modular Attestation
	Attestation and verification
	Number of Attested Modules

	Network Simulations
	Drones Demonstrator

	Security Consideration
	Off-Device Security
	On-Device Security
	Control-flow and data-flow monitor
	Non-critical modules
	Critical modules
	Data dependencies

	Discussion
	TyTAN
	TrustZone-M

	Related Work
	Conclusion
	References

