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Abstract. The Internet of Things (IoT) is connecting billions of smart devices.
One of the emerging challenges in the IoT scenario is how to efficiently and se-
curely manage large deployments of devices. This includes sending commands,
monitoring status and execution results, updating devices firmware, and interac-
tively resolving problems.
In this paper we propose SCIoT, a Secure and sCalable framework for IoT man-
agement. SCIoT guarantees low complexity in terms of communication, storage
and computation on both managed devices and the management entity. SCIoT
enables secure management of large deployments with a single low-power man-
agement device, by leveraging trees of common untrusted intermediate infras-
tructures. SCIoT brings three technical contributions: (1) a domain-independent
management specification by means of extended finite state machines, which
specifies states and desired transitions to describe the whole management pro-
cess; (2) a protocol for securely and efficiently distributing applicable transitions
of the automaton corresponding to commands; and (3) a protocol for securely
aggregating status responses from the managed nodes using a tree of untrusted
nodes. We show feasibility and efficiency of SCIoT by both a proof-of-concept
implementation of the client agent on Riot-OS – an operating system for the IoT,
and a large scale evaluation, using realistic assumptions. Our thorough evalua-
tion highlights the efficiency of our command distribution protocol, as well as the
small (logarithmic) runtime and overhead of data collection.

1 Introduction
The increasing demand of connectivity and services that rely on distributed sensing and
control is populating the world with billions of interconnected devices. Cisco [2] fore-
casts that 50 billion of such devices will exist in 2020. This phenomenon is commonly
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called the Internet of Things (IoT). IoT devices are utilized in many different domains,
ranging from small-size ecosystems, such as smart homes, to very large scale deploy-
ments for automation or distributed sensing. Examples of large IoT deployments are the
experimentation facility at Santander city [27], which currently counts more than 2000
interconnected devices, and, at a much larger scale, smart metering systems, which only
in the US count over 65 million devices [17].

IoT devices have constrained resources and limited (usually intermittent) connec-
tivity. They are usually connected to edge (or gateway) devices, which provide services
such as protocol translation, access to intermediate connectivity infrastructures, and
data caching and aggregation at the edge of the network; these features are particularly
useful in large scale deployments [12,22,20,33].

In many deployments, an efficient and effective management of IoT devices is fun-
damental [29]. Device management comprises critical tasks, such as distribution of
commands and software updates, or device monitoring. Management processes are typ-
ically planned and controlled by systems administrators. In this paper, we consider a
scenario in which a system administrator, which may have limited computational re-
sources, needs to manage a large population of IoT devices.4 We consider a manage-
ment process comprising two main tasks: (1) broadcasting a subset of commands to
targeted devices (accompanied by additional corresponding data, such as command pa-
rameters or a firmware update package); and (2) collecting statistics on the outcome of
commands execution. As an example, the system administrator of a large deployment
may want to know the percentage of devices that are in a correct (known) state, after
a collective software update has been executed. Management operations are performed
over an intermediate aggregation and cache-capable network, which is untrusted for
providing data integrity or authenticity.

In the above scenario, secure and efficient management turns out to be particularly
challenging: On the one hand, while solutions and standards for secure and lightweight
IoT device management already exist (e.g., the work in [29], or the Lightweight Ma-
chine to Machine protocol from the Open Mobile Alliance – OMA LWM2M [25]),
they are designed for individual device management. Therefore, unless all intermediate
aggregation nodes are trusted, their cost scales linearly with the number of devices to
be managed. On the other hand, existing approaches for efficient aggregate statistics
collection over an aggregation tree impose a linear verification overhead on the man-
agement entity [16,34].
Contribution. This paper presents SCIoT, a framework for IoT device management that
targets large deployments. SCIoT considers a layered and realistic architecture, and on
top of it defines a set of protocols for scalable and secure IoT device management. In
particular, this paper brings the following contributions:

– A simple domain-independent management process abstraction by means of a finite
state machine, that we call Management Finite State Machine (M-FSM). M-FSM
allows to express potentially complex management tasks using a concise and high-
level representation.

4 Industrial trends envision using low-power devices, e.g., a smartphone, for managing a large
number of devices.
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– The design of a simple, fully-cacheable, and end-to-end secure protocol for com-
mands distribution, based on the management representation provided by M-FSM.
Our protocol can sit on top of any pull-based message-response protocols. It lever-
ages in-network caching to speed-up commands distribution. SCIoT’s commands
distribution protocol allows clients to “manage themselves”, i.e., only selectively
download the specific subset of information needed to take the next management
action (e.g., a specific software update).

– The design of a protocol for scalable monitoring of large deployments. We de-
vise an aggregation protocol based on the protocol from [16] that leverages an
untrusted tree-based aggregation infrastructure to aggregate inbound status infor-
mation, while maintaining a constant verification overhead at both device and man-
agement side, and a logarithmic traffic. Our protocol ensures that even if millions of
nodes report back to a central management node, traffic and required computation
at the server remains manageable.

– We implemented and tested a client device agent for Riot-OS – an operating sys-
tem for resource-constrained devices – and ran a thorough experimental evaluation
of our protocols via simulation (similar to [8,7]); our evaluation demonstrates the
scalability of SCIoT, and its low overhead at the management side.

2 Background and Primitives

2.1 Multi-Signature

A multi-signature scheme allows a set of users to compute a signature on the same
message m so that individual signatures can be aggregated into a single compact multi-
signature. The multi-signature can be verified in constant time by means of a unique
aggregate public key. Signature verification succeeds if all the computed signatures are
included into the multi-signature. In this paper, we consider the multi-signature scheme
in [10], built using bilinear pairings [11].

Consider three multiplicative groups G1, G2 and GT of prime order p, and an
efficiently computable bilinear map e : G1 × G2 → GT s.t., e(g1, g2)xy = gxyt ,
where g1, g2, gT are generators for G1, G2 and GT , respectively, and x, y ∈ Zp. Let
H : {0, 1}∗ → G1 be a hash function that maps a bitstring of arbitrary size into an
element of G1. A multi-signature scheme is defined as follows:

Key Generation. Each signer i generates a random secret key xi ∈ Zp, and computes
its public key as pki ← gxi

2 . Public keys can be aggregated into an aggregate public key
Y ←

∏n
i=1 pki , where n is the number of signers.

Multisignature Generation. A signer i produces a signature σi on a message m as
σi ← H(m)xi ; all σi-s can be combined into a multi-signature Σ ←

∏n
i=1 σi, where

n is the number of signers.

Multisignature Verification. Given the aggregate public key Y , the multi-signature Σ
can be verified by checking whether e(Σ, g2) = e(H(m), Y ).

This multi-signature scheme is provably secure against existential forgery under
chosen message attacks in any Gap Diffie-Hellman (GDH) group [10].
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2.2 Secure In-Network Aggregation
In-network aggregation allows reducing the communication overhead when performing
queries and collecting statistics from nodes in large networks. In this paper, we devise
a hierarchical in-network aggregation scheme with constant verification overhead. Our
scheme is based on the solution from [16] and satisfies the requirement of SCIoT.

Our in-network aggregation scheme is organized in two main phases: (i) a query
dissemination and response collection phase, and (ii) a result verification phase.
Collection Phase. In this phase a central querying entity (i.e., the manager in SCIoT)
broadcasts a query to all nodes in the network along an aggregation tree. Then, start-
ing at leaves, nodes recursively aggregate responses coming from their child nodes and
forward the result to their parent nodes. Each node also commits to its aggregation by
computing and forwarding a hash over all the responses it aggregates. The computed
hash also include hashes that come from child nodes. Finally, the final aggregate re-
sponse and commitment are reported back to the querying entity.
Verification Phase. In this phase the querying entity broadcasts the received aggregate
response and commitment, asking nodes to check whether their contribution has been
integrated correctly in that response. Each individual device verifies their correct con-
tribution to the final response and creates an acknowledgment message and sends it the
querying entity. Acknowledgment messages are authenticated using the multi-signature
scheme we introduced above, which allows their secure aggregation with constant com-
munication and verification overhead.

3 SCIoT Architecture Design

3.1 System Model
We define the system model in Fig. 1, where a manager M, is in charge of carrying
out the management of (some or all the devices in) a network G. More precisely, we
consider a network of interconnected physical devices Di ∈ G (each pictured as a dot-
ted rectangle in Fig. 1), where each can act as one or more of the following logical
entities: endpoint (vj), aggregator (al), or cache (cu). A endpoint vj is the endpoint
entity of the management process; vj receives and executes commands from M and,
upon request, providesM with statistical information regarding its current status. Ag-
gregators and caches are relay entities (i.e., edge or gateway devices) that have different
roles: al is capable of aggregating statistics collected from endpoints, while cu caches
commands distributed byM. As a consequence, they play a role in distinct parts of the
management process, i.e., cu helps speeding up one-to-many commands distribution,
while al has the purpose of reducing both network andM-side computation overhead
when collecting statistics from vj .

Entities in the system are organized into two logical tree structures:5 a distribution
tree where inner nodes are caching entities and leaf nodes are managed entities (solid
lines in Fig. 1), and an analogous aggregation tree that has aggregating entities as inner
nodes, and managed entities are leaves (dashed lines in Fig. 1). Note that, in this model
a failing inner node can be simply replaced by its parent in the tree. The connection

5 See [8] for how aggregation trees are constructed and maintained.
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Fig. 1. System model as a network of devices; each device acts as at least one of the following
entities: endpoint (vj), aggregator (al), and cache (cu).

interfaces between nodes are purely logical, i.e., they do not necessarily have a one-
to-one mapping with a single physical communication interface. A clear example is
v1 in Fig. 1: interactions with both c1 and a1 are performed internally to the physical
device D1. Similarly, v4 communicates with a3 through an internal interface, while it
communicates with c3 (which is located in D5) through a network link.

This representation is sufficiently generic to represent different scenarios and use
cases, from Wireless Sensor Networks (WSNs), where all the devices in the network
act as all the three entities, to infrastructured settings, where IoT devices act as endpoint
entities, while gateways represent either caches, or aggregators, or both. Note that, the
definition of our management scheme is independent from the caching strategy adopted
by caching entities. However, the capacity of caches together with the adopted caching
policy, play an important role in improving the performance of the system. Neverthe-
less, this usually depends on the deployment scenario, and the capabilities of devices.
Thus, we consider this to be out-of-scope.

3.2 Requirements and Assumptions
Scalability and Security Requirements. We aim at providing a highly scalable solution
for management systems, which enables handling a large number of devices, through a
resource constrained manager. Our goal is to reduce both computation and storage com-
plexity forM, while at the same time maintain a low communication and computation
overhead on al, cu and vj . More precisely, we identify the following set of properties
that defines a scalable and secure management system:

1. Outbound efficiency. The management system should guarantee an efficient broad-
cast distribution of management commands to endpoints.

2. Commands freshness. The system should provide mechanisms to allow endpoints
to assess whether a received command is still valid.

3. Inbound efficiency. M should efficiently collect aggregate statistics of endpoints
(e.g., the number of endpoints in a certain state).

4. Outbound security. It should be guaranteed that only legitimate management com-
mands coming from the manager are executed on endpoints.

5. Inbound security. The integrity of the statistics collected from endpoints should be
ensured.

Security Model. We assumeM is trusted, i.e., it honestly follows the management pro-
cess and protocols. We also assume thatM issues authorized management commands
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for distribution. We do not trust all the intermediate entities that are responsible for ag-
gregation and caching, i.e., al, and cu. All these entities can be under full control of
the adversary. As for vj , we assume these entities are trusted in executing management
commands and providing statistical information. We assume all devices that contain
a vj to have the necessary security hardware that protect vj from compromise (e.g.,
TrustLite [24]). Finally, we consider a stealthy adversary that aim at manipulating the
management and collection process without being detected. Thus, we consider Denial
of Service (DoS) attacks that aim at undermining the availability of these services to be
out-of-scope.
Attacker Goals. The goals of the adversary controlling cu are to: (i) Tamper with com-
mands sent byM; and (ii) ImpersonateM issuing commands to vj . Analogously, an
adversary controlling one or more aggregating entities al, has the following goals: (a)
Tampering with the statistics collected from one or more devices; and (b) Impersonating
a device sending fake statistics toM.

3.3 FSM Abstract Specification of Management Objectives
An important component of SCIoT is the abstraction we use to decouple domain-
specific management requirements from the actual realization of the management pro-
cess. Such abstraction allows to define a management-independent communication pro-
tocol between endpoints andM, which is both simple and highly scalable. The main
intuition behind this abstraction is to allowM to carry out the whole management pro-
cess by simply serving, upon devices’ request, a set of static (and therefore cacheable)
contents. These contents are efficiently delivered to the endpoints by leveraging the
intermediate caching entities cu.

We represent our management process specification by means of an extended finite
state machine, that we call Management Finite State Machine (M-FSM). M-FSM repre-
sents, in its minimal form (i.e., sub-M-FSM), a single command execution. Sub-M-FSM
comprises (see Fig. 2):

– At least three states a device can assume: (1) a starting state, representing a device
waiting for a command to execute; (2) an attempted execution state, representing
the device after the execution of the command; and (3) at least one termination state
(e.g., a system failure). Each state is uniquely identified by an ID SID.

– At least two transitions: (1) one transition from the starting state to the attempted
execution state. This transition is labeled by an execute event and a corresponding
COMMAND action (i.e., a command to execute); and (2) at least one transition ending
to a terminal state. Actions are executed by the function Execute, and may write
into global variables. In particular, the COMMAND writes its outcome (i.e., the return
code of the command) in the out variable. Outgoing transitions from the attempted
execution state are labeled with a switch event, parametrized on the value of the
out variable, and an OTHER ACTION to execute. These transitions can “point” to
either a terminal state, or the starting state of another sub-M-FSM.
Fig. 2 provides a graphical representation of a sub-M-FSM, where ovals repre-

sent states, and arrows represent state transitions. Events and corresponding actions
are placed on top of each transition and separated by “|”. Boolean guards, based on
which transition is chosen, are indicated within squared brackets. The sub-M-FSM in
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Fig. 2 represents a single command execution (or may represent a loop, in case the
sub-M-FSM has a transition from the executing to the starting state). More complex
execution processes can be obtained combining several sub-M-FSMs, to represent the
execution of consecutive commands where the execution of a subsequent command
depends on the successful execution of the previous one. This is done by adding an out-
going transition (based on the outcome of the command) from the attempted execution
state to the starting state of another sub-M-FSM.

Fig. 2. Basic sub-M-FSM. A device in “Starting” state executes the only transition to the at-
tempted execution state, performing an action Execute. Depending on the outcome (e.g., return
code) out of Execute, the device might follow one of the outgoing transitions: to the starting
state, to a termination state, or to (the starting state of) another sub-M-FSM.

M-FSM Composability and Overhead. It is worth noticing that, as the M-FSM is a com-
position of single sub-M-FSMs, each representing a command execution, in a manage-
ment process the M-FSM can be arbitrarily incremented with additional M-FSMs over
time. This property is particularly useful in the management scenario, as it allows to
model management processes that cannot be completely defined statically, such as sub-
sequent firmware/software update releases. As a consequence, from an endpoint per-
spective, at a generic point in time ti the entire management process can be represented
only as the current command to execute. This guarantees an almost constant overhead
at the endpoint.
Use Case Example (Device Firmware Update M-FSM). An interesting use case M-FSM
is the (simplified) device firmware update process shown in Fig. 3. A single device
update process is composed of an update installation phase, and a recovery attempt
phase. These two phases are represented by analogous sub-M-FSMs. The update pro-
cess starts from a “Not Updated” state (S1); the execute transition (and the consequent
execution via Execute of UPDATE) brings the device into an “Update Attempted” state
(S2). The function Execute writes its outcome (e.g., an integer code) into the global
variable out. Based on out, the device follows a specific switch transition, and exe-
cutes the NULL action (i.e., no action is executed). In case of FATAL ERROR, the process
moves to a terminal “System Failure” state (S3). If, instead, the update process termi-
nates successfully (i.e., out == SUCCESS), the device jumps to the starting state of the
next sub-M-FSM in the process specification.6 Finally, if the update process encoun-
tered a recoverable error (SIMPLE ERROR), it switches to a recovery phase, jumping to

6 New “Not Updated” state, which will have a different SID w.r.t. the previous analogous state.
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the initial state “Erroneous State” of the Recovery Phase sub-M-FSM. In such phase,
the device tries to recover the previous software state by executing a RECOVERY action
with the function execute, jumping to a “Recovery Attempted” state. The outcome of
execute is written into out2, which is used to switch to an end state (representing a
fatal unrecoverable error), or to the previous “Not Updated” state.

Fig. 3. Example: Firmware update management.

Note that, in order to avoid an infinite number of attempts, the action RECOVERY

maintains a counter, recording the number of attempts made by the device; if this num-
ber is greater than a threshold, execute will return a FATAL ERROR (this is not shown
in Fig. 3 for simplicity). Furthermore, while shown in Fig. 3 as a transition to a different
state S7, in practice, in order to avoid state explosion [32], S2 switch transition may
simply return to S1, which represents a “Not Updated” state, but with a different SID.

4 SCIoT Protocols

4.1 A Scalable Self-Management Protocol
The first main component of SCIoT is a simple and scalable protocol to distribute man-
agement commands from M to endpoints vj . Commands distribution is based on an
M-FSM specification (e.g., firmware update M-FSM in Section 3.3). Based on abstrac-
tion provided by the M-FSM, we designed a secure pull-based message-response proto-
col which allows: (1) domain-independent device management; (2) efficient cacheable
distribution of management commands, suitable for caching networks or content deliv-
ery networks; and (3) minimal storage requirement on endpoints.

In order to simplify the exposition, in what follows we detail our self-management
protocol between a single endpoint vj , andM.

The main idea behind our protocol is the following. Each endpoint vj “moves”
inside the M-FSM maintaining information about its current state only, while pulling the
next available transition fromM. More precisely, vj pulls either: (a) An execute event,
and corresponding COMMAND action, from a starting state; or (b) A switch event and
corresponding OTHER ACTION action from an attempted execution state. vj queriesM
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issuing a request message (req) that is forwarded through intermediate cu entities.M
then responds with a response messages (resp). Note that, caching entities may cache
response messages, before serving them back to the querier, to better serve “bursty”
requests and reduce latency. This is particularly important when devices request large
payloads, such as firmware updates [6]. This communication model is supported by
existing application level protocols (such as CoAP [14], which implements a message-
response protocol on top of UDP), as well as by recently proposed information-centric
protocols (such as Named-Data Networking [23]).

Fig. 4. Self-management protocol using µTesla. Here, we assume vi already has a commitment
(i.e., a key it trusts) corresponding to time interval τ − 2.

Protocol Description. As shown in Fig. 4, from a state SID, vj queries M for
the next available transition (and event-action pair). More precisely, vj sends a req
message, which contains vj’s current state ID SID, and a list of key-value pairs
[< var1 : val1 >, . . .] indicating M-FSM variables, and their current value. These pa-
rameters are used byM, or by caching entities, to select the matching response packet
to return to vj . Note that, the way SID and the key-value pairs are included as parame-
ters of vj’s request depends on the adopted underlying transport protocol.

The response supplied byM contains the next event and action to execute (using
the function Execute). Once the command in action is executed, vj jumps to the next
attempted execution state, and issues a new request message req ′. The endpoint then
obtains a new event and action to execute and move to the next M-FSM state, which
can be either terminal or starting state – MoveToState.

In case of large command payloads, e.g., a new firmware, the action specifies only
a “pointer”, e.g., a hash of the payload, to use for (potentially cached) payload retrieval.
vj then downloads the payload in an additional step. Note that, as caching entities may
directly respond to req with a cached response, we added a timestamp parameter t and
a validity interval ∆t to each (signed) response returned to vj . In this way, endpoints
can determine whether a received transition (or command payload) is “fresh”, i.e., not
expired according to t and ∆t. In order to guarantee availability, intermediate caching
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entities must ensure that devices are able to detect whether a content is fresh or not, and
should provide mechanisms to “force” requests to be served directly from the source.7

Protocol Security. SCIoT works in conjunction with several security layers suitable for
large scale broadcast distribution. In particular, in SCIoT M may either use digital
signatures, or µTesla authenticated broadcast protocol [26] to authenticate management
commands. Using µTesla, SCIoT’s management automation protocol guarantees public
verifiability for resource-constrained devices (i.e., devices able to compute only basic
cryptographic operations, such as hash functions and Message Authentication Codes –
MACs), while preserving the cacheability of the distributed data.

Depending on the authentication mechanism in use, responses generated byM are
sent along with either a digital signature, or a MAC. In the case of digital signatures,M
signs each response with its secret key skM and endpoints verify it usingM’s public
key pkM. On the other hand, while using µTeslaM attaches a MAC to each response,
computed using a symmetric key kτ that is valid only within a certain time interval τ .
At time τ + d, kτ is disclosed, i.e., broadcasted in a special packet. Endpoints can then
verify the MAC on the buffered response packets received during time interval τ [26]. In
detail, vj downloads the next transition packet fromM at time τ , and stores it in a local
cache. vj verifies the message at time τ + d, i.e., after receiving the broadcasted key
kτ . This process is shown in Fig. 4. In order to build a cryptographically verifiable key
series,M makes use of one way hash chains, i.e., the key used at time τ is obtained as
the hash of the key that will be used at time τ +1 [26]. Note that, different applications
may require different key disclosure time intervals. For this reason, M keeps several
key sequences, generated from different hash chains and have different key disclosure
time intervals. Upon receiving a request req ,M computes the MAC on each response
using different keys. The key sequence to be used is specified in req .

While the digital signature is permanently cacheable, MACs have an expiration pe-
riod, which corresponds to the key disclosure time. Endpoints are free to choose be-
tween requesting a response with a digital signature or a MAC. In other words, end-
points can autonomously determine the best trade-off between computation overhead
and the delay in the reception of the data. Devices choose between different options
based on a set of factors, including their computational power, remaining energy, and
the time limits specified by the application. Moreover, endpoints can choose between
MACs with different “delays” (i.e., key disclosure interval ∆τ ) based on their degree
of synchronization. This provides a trade-off between security level and response delay.
The number of MACs and the time interval for each hash chain are design parameters
that may depend on the properties of the network (e.g., bandwidth or size), and on the
requirements for different applications.

7 This feature is transport specific: In content-centric protocols such as Named-Data Networking
(NDN) [23], content freshness is controlled by flags contained inside headers, i.e., via data
packet’s Freshness and interest’s MustBeFresh header fields. In CoAP [14], however,
this is not possible. Response packets carry a Max-Age option indicating that the response is
to be considered not fresh after its age is greater than the specified number of seconds.
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4.2 Scalable Device Monitoring and Assessment

The protocol described in Section 4.1 alone enables managed entities to execute avail-
able commands, perform state transitions, and conduct error recovery as specified by
the management finite-state automaton. However, it does not allow the management
layer to learn to what extent the management strategy has been successful. A simple
example is thatM would not learn if a given firmware update always leads to failures.
More generally,M needs to collect and maintain statistics, such as the percentage of
endpoints that are in a certain state in the update process shown in Section 3.3.
Naı̈ve approach. A naı̈ve approach for device state assessment would be by requesting
the required information from each device individually;M could broadcast a challenge,
and collect the individual responses from endpoints. This approach, however, is hard to
scale, as it would result in O(|G|) traffic and verification complexity.
In-Network Aggregation. A more scalable way to collect the global network state is
relying on in-network aggregation. Each device reports its state to its upstream aggre-
gating node. This, in turn, computes the aggregate sum of each value coming from its
children and forwards it to its parent aggregating node in the internal tree structure,
and so on. Using authenticated channels, M can efficiently verify the authenticity of
the received aggregate counts. This simple approach has been adopted in several solu-
tions, such as in [8]. However, a major important drawback of simple aggregation is
the absence of end-to-end integrity in presence of malicious aggregating entities, i.e.,
in-network aggregation requires fully trusted aggregators [7].
Secure In-Network Aggregation. Our approach for collecting statistics on endpoints
over untrusted aggregators is based on the hierarchical secure in-network aggregation
scheme presented in Section 2. It allows: (1) using in-network aggregation to compute
an aggregate value, and (2) integrity verification by M in constant time. Recall that
aggregation in SCIoT is performed by logical aggregating entities, which (similarly
to [8,7]) can form an overlay aggregation tree rooted atM, where aggregating entities
al are inner nodes, and vj are leaves. Finally, aggregating nodes are also untrusted for
authenticity of aggregation. The overall protocol runs as follows:

– The managerM broadcasts the state it is interested in collecting statistics for (either
signed withM’s secret key, or using an authenticated broadcasts protocol, such as
the one described in Section 4.1).

– Each endpoint vj responds with 1 if it is currently in that state, and with 0 otherwise.
– Intermediate aggregators sum the received values, and forward the computed value

up toM.
– After collecting the aggregate value computed on phase (i),M broadcasts the final

aggregate result authenticated in the same manner as above.
– Based on the commitments (see Section 2), endpoints can verify that their contri-

bution has been added to the aggregate value. If this is the case, each endpoint vi
produces a multi-signature σi on a pre-established “OK” message using its secret
key ski . Otherwise (in case the verification fails), it sends a negative acknowledg-
ment (NACK) to its gateway aggregator.

– Aggregators combine all the signatures (along the formed overlay aggregation tree)
according to the multi-signature scheme described in Section 2, and finally deliver
a single aggregate signature Σ toM.
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– M can verify the signature using the pre-computed aggregate public key Y .

Note that, in the case in which the verification fails,M can conclude that an error
happened, i.e., the contribution of a node was lost, or that some aggregator maliciously
modified either the aggregate value, or the signature.
Inspecting Individual Devices. The protocol discussed in the previous sections, count
the devices in each given state. However, in some cases, inspection of a given small
number of devices may be desirable. In order to enable device inspection, the manager
can issue a call-back command to all endpoints in a given state. This command triggers
the devices to “call home”, report their ID, and then be available for further debugging.
To enable this, an endpoint can be “probed” byM, and respond with the identifier of its
current status in a signed response message. Note that, unless debugging is constrained
to few devices, this might quickly create a bottleneck on the whole system, especially
in the case in whichM needs to collect several periodical statistics from the devices.

5 Prototype Implementation
We implemented SCIoT’s client agent as a module for Riot-OS [9,21] (i.e., targeting
IETF Class 1 and 2 devices [13]). This module implements both SCIoT’s commands
distribution protocol, and responds to device assessment requests fromM.M imple-
mentation is fairly simple, as it consists in a simple server application that exposes basic
APIs (later discussed in this section), and periodically queries devices; for this reason,
it will not be discussed in this section.

Riot-OS [9,21] is an operating systems suitable for resource constrained environ-
ments. It implements a micro-kernel architecture, and allows applications to include
only the minimum modules necessary for their execution. Furthermore, Riot-OS does
not differentiate between processes and threads. Each application runs on its own thread
of execution, but can freely create other threads (the limit in number is given by the
available memory). Our client implementation module exposes a concise set of APIs,
and can be easily utilized by applications to automate management tasks.

Our implementation uses CoAP [14] for both M-FSM management, and to deliver
statistics collection queries fromM to endpoints.

The device agent runs on its own thread of execution (see Fig. 5), and interacts with
a simple CoAP server. An application that needs to carry out a management process
should wait for transitions (i.e., commands) coming from the agent via Riot-OS IPC
(Inter-Process Communication), and react accordingly, i.e., execute a command with
a specific ID. The device “talks” to a server via a minimal set of CoAP REST APIs.
The server runs either at the manager, or on an edge node, which may act as a proxy
and translate CoAP requests into HTTP [18]. The client device requests transitions by
issuing a CoAP request

coap : //[SERVER IP]/sid?sid = SID& . . .,

where SERVER IP is either the IP address ofM, or of the 1st-hop aggregating node,
and sid = SID is the only mandatory parameter of the query. Similarly, the agent run-
ning on the device accepts CoAP assessment requests for a state ID SID, of the form:

coap : //[BROADCAST IP]/assess/?nonce = N&sid = SID.
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Fig. 5. Client agent module for Riot-OS.

6 Performance Evaluation
In this section, we present an evaluation of our solution, based on our implementation
presented in Section 5, and on an emulated, yet realistic setting. Our considered setting
consists of low-end devices compatible in capabilities with M3 Open Node devices from
the IoT-Lab/SensLAB testbed [3]. These devices are featured with an ARM Cortex M3,
32-bits microcontroller running at 72 MHz, 64 Kbyte of RAM, and a 2.4 GHz IEEE
802.15.4 capable transceiver [4]. Moreover, we considerM to be a low-cost medium-
power device, compatible with a Raspberry Pi Mod B, i.e., equipped with a 700 MHz
CPU, 512 Mbyte of RAM, and 2 Gbyte of storage.

We implemented the multi-signature scheme we introduced in Section 4.2, based on
the embedded system library in [31]; we used the mbedTLS library [1] for the remaining
cryptographic operations: SHA-1 based HMAC (Hmac1), and ECDSA. We evaluated
the approaches we presented in Section 4 at large scale using network simulation.

6.1 Storage overhead
Aggregating nodes, al, do not need to store any information. Caching entities have
a storage overhead which depends on the size of their cache, and the data currently
contained in it. An endpoint vi keeps in its persistent storage: (i)M’s public key pkM
(32 byte in case of public key), or the commitment for the whole key chain (20 byte
in case of µTesla [26]); (ii) the current state of the M-FSM, which comprises the ID
SIDj (2 byte); (iii) Di’s public and private multi-signature keys (256 byte and 32 byte,
respectively). The overall storage requirement of each device is 322 byte, if public key
is used, and 310 byte if µTesla is used. Low-end devices targeted by SCIoT have at
least 1024 bytes of secondary memory [7], and thus SCIoT will use 31.4% of it when
the public key is used, and 30.3% otherwise.

6.2 Communication overhead
We now provide an estimate of the bytes transmitted between an endpoint vj , andM. In
general the use of µTesla generates an overhead of one key release (approx 30 byte [26])
per time interval τ of each time series. Note that, we focus only on the overhead intro-
duced by SCIoT protocols, and thus, we do not include the overhead generated by the
underlying protocol stack.8

8 Typically, the stack comprises CoAP, 6LowPAN, IPv6 and 802.15.4. Additional overhead is
introduced by protocol headers, plus possible segmentation or fragmentation.
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Commands Distribution. When requesting a transition,Di produces a request indicating
the ID SID of its current state, and, if using µTesla, the parameter ∆τ , indicating the
time seriesDi is using. This generates at most as little as 6 bytes.M sends out a packet
comprising a transition (TID, SIDS , SIDD, and a command), a timestamp t, a validity
interval ∆t, and an authenticator (i.e., a digital signature or a MAC). Referring to our
implementation in Section 5, and considering 4 bytes for both t and ∆t, the overall
communication overhead of command distribution protocol is between 80 and 334 byte,
when using digital signatures, and between 37 and 291 byte, when using µTesla.
Device Assessment. In the first phase of this scheme each device sends a 26 byte label.
The amount of bytes generated by the second part of the protocol is logarithmic in the
size of the network. More precisely, the overhead of this protocol varies based on the
height of the aggregation tree, and the number of leaf endpoint nodes. This overhead
is mainly due to the off-path9 information required by the scheme to allow each device
to verify whether its contribution has been added to the aggregate value. The off-path
values are locally cached by each aggregating node during the data collection, and re-
distributed by the network in the second step of the scheme. Each label has a size of
26 byte. Thus, let h be the height of the tree formed by aggregating nodes (only), and
l the number of leaves (i.e., endpoints) connected to the last layer of the aggregating
tree; the total communication overhead on each endpoint, in terms of received data,
is 26 × (h + l) byte. As an example, consider a binary tree, and let l = 24 = 16,
and n = 210; in this case, h = 14, and thus, the average amount of bytes received
by each endpoint will be 780 byte. Finally, the acknowledgment sent by each endpoint
(and aggregated by aggregators) consists of 84 byte (a 20 byte nonce, and a 64 byte
multi-signature).

6.3 Runtime
We estimate the runtime of both the command distribution protocol (Section 4.1), and
the statistics collection protocol (Section 4.2). Execution time is mainly dominated by
cryptographic operations, and data transmission. Table 1 shows the time overhead in-
troduced by the adopted cryptographic operations on two types of devices: M3 device
(low- end) from IoT-LAB, and Raspberry Pi Mod B (higher-end).

Table 1. Cryptographic overhead

Function
Time (ms)

M3 IoT-LAB Raspberry Pi Mod B
(Endpoint) (Aggregator)

H(m) ∈ G1
(1) 360.319 89.168

gx1 , g1 ∈ G1 494.619 124.604
g1 × g′1, g1, g1 ∈ G1 23.615 8.459
e : G1 × G2 → GT – (2) 1.736
Hash1

(3) 0.102 0.031
Hmac1

(3) 0.408 0.124
ECDSA Verify (3) 1181.140 – (2)

(1) Computed on a 20 bytes nonce
(2) Not performed by the device during the protocol
(3) Computed on 64 bytes

9 For each node, off-path information are the commitments of every child nodes of each node
that is on its path to the manager.
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In addition to real world implementation and testing, we evaluated scalability of
SCIoT based on a large scale simulation using the OMNeT++ discrete event simula-
tor [5]. We considered two different settings: (I) An infrastructured setting where low-
end devices, acting as endpoints, are directly connected to higher-end nodes, which
form a layer of aggregators and caches; and (II) an ad-hoc setting comprising low-end
devices acting as both endpoints, aggregators and caches. We simulated the execution
of the various protocol operations by adding respective delays. Furthermore, we con-
figured the communication rate for links among low-end devices, and between them
and high-end devices, to 75 Kbps, i.e., the effective measured data rate for ZigBee, a
common communication protocol for IoT devices [30]. We set links among high-end
devices (comprising manager), with a bandwidth of 10 Mbps.

Setting (I) has a variable number of low-end nodes (i.e., endpoints), between 26

and 220 = 1, 048, 5761; the layer of aggregators and caches is internally organized
as a binary tree, e.g., as an overlay. We set the size of this intermediate layer to be
proportional to the number of low-end devices, i.e., the number of endpoints per aggre-
gator/cache is constant. We indicate with r the ratio between the number of high-end
nodes acting as aggregators/caches, and low-end devices. For simplicity, we assume the
tree configuration is static, and pre-determined; as an example, this may be the case of
an infrastructure supporting data collection in a smart city scenario.

Setting (II) comprises a variable number of low-end devices that embody all the
three entities, between 26 and 220 = 1, 048, 5761. Similarly, we assume low-end de-
vices can form a binary tree, rooted at the manager.
Commands Distribution. We configured setting (I) with r = 32. Caches use a First-In-
First-Out (FIFO) policy. Endpoints (i.e., low-end devices) request a transition fromM,
starting at a random time between 0 and 1 s, and can either verify a digital ECDSA
signature on the received response, or use µTesla; in the latter case, the endpoint
waits for the subsequent key disclosure interval τ + d (in our setting, we considered
∆τ ∈ {0.5, 1} s, and d ∈ {1, 2} s) to fetch the necessary information and verify the re-
sponse fromM. Similar to [6], we compared direct fetching, and cache-aided fetching
of transitions (the latter is enabled by SCIoT); we measured the average time it takes
for an endpoint low-end device to fetch a transitions from M. Results are shown in
Fig. 6. As expected the distributed caching of responses helps speed up the response
fetching for a given request: The download time grows logarithmically in the size of
the device population. Moreover, with the considered parameters, µTesla with d = 1
shows a reduced overhead than using digital signatures; this, however, comes at the
price of a more complex and expensive key management, and stricter constraints (e.g.,
each device must be loosely synchronized withM) [26].

This simple experiment shows the scalability of our protocol, which indeed max-
imizes the cacheability of each response issued by M. These results are in line with
previous evaluation, such as the one in [6], where the experiments where conducted on
top of a Named-Data Networking (NDN) network [23], but on smaller scale.
Device Assessment. We compared our in-network aggregation scheme to the work from
[16]. We evaluated these protocols in the same settings, settings (I) and (II), used in the
evaluation of the commands distribution protocol. In Setting (I) the ratio between the
number of endpoints and aggregators is constant. Results are shown in Fig. 7. In general,
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Fig. 6. Commands fetching in SCIoT.

we observe that the runtime introduced by the protocol in [16] grows linearly in the
number of endpoints, while the runtime of our scheme grows logarithmically with the
number of endpoints. The most expensive part of the protocol in [16] is the verification
of the acknowledgments received byM, which consists of computing linear number of
HMACs (i.e., n). Instead, our scheme that is adopted by SCIoT, introduces a constant
overhead for such verification.
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Fig. 7. Device assessment overhead. Axes are in logarithmic scale.

The runtime of both [16] and our aggregation scheme depends also on the depth of
the aggregation tree, which in our settings depends on the ratio between the number of
endpoints r and aggregator nodes; in our setting, the runtime is higher when r = 32,
compared to r = 16. This is due to the required off-path information that the network
must provide to endpoints, and the derived computation for verifying the inclusion of
each endpoint. As previously mentioned in Section 6.2, this is proportional to both the
height of aggregation tree, and r.

For small-medium scale settings, the scheme from [16] is more efficient than our
scheme, requiring less than 4 s to complete the assessment. Indeed, computing a multi-
signature costs more than computing a Hmac for low-end devices. However, in case
of very large settings the runtime of the scheme from [16] quickly grows, requiring a
non-negligible overhead onM. On the other hand, the use of multi-signatures presents
a much more manageable overall overhead. As an example, considering r = 16 in
our evaluation setting, when number of endpoints is 32, 768 the use of multi-signatures
shows an improvement in system’s scalability: The runtime grows slowly compared to
the scheme from [16], taking 4.7 s to run an assessment (compared to 5.4 s of [16]).
This suggests the possibility of using an hybrid approach tailored to the specific setting,
whereM can select the protocol to use depending on the number of endpoints.
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7 Security Consideration
We now briefly discuss the security of our management system, w.r.t. our require-
ments. We consider a probabilistic polynomial time (PPT) adversary A, whose target
is twofold: (1) inject fake commands, i.e., transitions, inside the network of devices,
with the aim to interfere with the management process (i.e., with the protocol in Sec-
tion 4.1) and thus fooling benign endpoints into performing different actions than the
ones specified by the M-FSM; (2) manipulate the aggregate state collected byM (i.e.,
interfere with the protocol in Section 4.2), and makeM accept such manipulated value,
that does not reflect the values reported by endpoints. In order to perform the attack,
A can compromise one or more aggregators or caching entities, i.e., al or cu, or act as
a man-in-the-middle. Furthermore, A can also compromise a limited number of end-
points vj . However, we assume that the number of compromised endpoints is too small
to influence the collected statistics.

We formalize goals (1) and (2) as two security experiments: Exp1, betweenA and a
benign endpoint vj , and Exp2, betweenA, and vj andM, respectively. In Exp1, after
a polynomial number of steps by A, in terms of the security parameters `Sign, `Hash,
and `MAC, vj outputs o1 = 1 if it accepts the received transition, or o1 = 0 otherwise.
Similarly, in Exp2 after a polynomial number of steps by A in terms of `Sign or `Hash
and `MAC, and `N ,M outputs o2 = 1, if it accepts the manipulated aggregate value, or
o2 = 0 otherwise.

Definition 1 (Secure management service). A management service is secure if
Pr[o1 = 1|Exp1(1

`) = o1] is negligible in ` = f(`Sign, `Hash, `MAC), and Pr[o2 =
1|Exp2(1

`) = o2] is negligible in `′ = f ′(`Sign, `N , `Hash, `MAC); the functions f and
f ′ are polynomial in all the parameters specified.

Theorem 1 (Management service security). Our management service is secure, ac-
cording to Definition 1, if both the adopted multi-signature scheme and the public key
signatures are unforgeable, and µTesla is secure.

Proof (Proof (Sketch)). We now provide an intuition of our statement regarding the
security of our scheme.

(1) Pr[o1 = 1|Exp1(1
`) = o1]: vj outputs o1 = 1 iff IsValid(resp) = true , that is,

if the verification of the digital signature, or MAC in case of using µTesla, σ taken over
{TID, ..., t,∆t} is valid. In order to carry out this attack, A can create a new response
with a signature σ′ attributed toM. IfM uses public key signatures, e.g., using RSA,A
should be able to forge σ. However, using an unforgeable public key signature scheme,
the success probability for A is negligible in `Sign.

In case of using µTesla, authenticity and integrity of the received transition is guar-
anteed by a MAC. In this scenario, however, besides trying to forge the MAC σ (which
has negligible success probability in `MAC), A may also try to use an older key kτ ′

belonging to a time interval τ ′ < τ , where τ is the current time interval, to compute
the MAC on the response, for the time interval τ . Recall that, a key sequence is cre-
ated from a reverse hash chain, in a way such that: kτ−1 ← Hash(kτ ); thus, for the
properties of hash algorithms, the probability of kτ−1 = kτ is negligible in `Hash.

(2) Pr[o2 = 1|Exp21
`) = o2]: A can perform the following attacks on the as-

sessment protocol: a) attack part (i) of the device assessment protocol by modifying the
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value sent byM to vj ; b) attack part (ii) of the protocol by creating a valid acknowl-
edgment of vj , using an old signature σold from a previous interaction; or c) attack part
(ii) of the protocol by creating a fake acknowledgment with a multi-signature σ that
attributes to vj .

In order to perform the attack (a), A should be able to either forge a signature
generated byM, or to violate the security of µTesla; this is unfeasible for A, similar
to (1). Finally, strategies (b) and (c) are unfeasible for a PPT attacker like A, due to the
security of the multi-signature scheme against existential forgery attacks.

8 Related Work
Device Management. The Lightweight Machine to Machine protocol (LWM2M) [25],
proposed by the Open Mobile Alliance (OMA), is a protocol designed for secure device
management. Unfortunately, while certainly a valid solution, the protocol is intended
for management of individual devices, and therefore not suitable in our scenario. In
general, previous work in the literature either focus on network management for IoT
devices [28], or consider scenarios where devices can be managed individually [29].
We consider all the above works to be complementary to ours; they can be used, for
example, to perform one time bootstrap operation, topology maintenance, or individual
device inspection. In [6] Ambrosin et al. proposed a protocol for efficient and secure
delivery of confidential software updates to devices, by leveraging untrusted inner cache
enabled networks. The authors provided the description of their solution over a Named-
Data Networking (NDN) based inner network. However, different from our work, the
authors did not provide an efficient protocol to collect device statistics. Burke et al. [15]
presented a secure NDN-based security architecture for instrumented environments,
such as building automation systems, and in particular for one of its sub-domains, i.e.,
lighting control. Their proposed solution provides privacy and authenticity for both
command and acknowledgment messages, but unfortunately does not provide multicast
features, i.e., for management of multiple devices, the management entity must issue
multiple individual commands.
Secure Data Aggregation. There is a rich literature dealing with secure in-network data
aggregation, especially in the context of Sensor Networks (SN), and Wireless Sensor
Networks (WSN). These approaches are typically executed on top of an aggregation
tree, and allow to combine the contribution of each node in a secure way, i.e., in a way
that is verifiable by the collector node. In other words, the collector can verify that the
aggregate result has not been tampered by inner aggregator nodes, and that all nodes
contributed10 to the computed aggregate value. Secure aggregation protocols usually
focus on limiting communication and computation overhead for end nodes, and in the
network, but pay less attention to the overhead at the verifier, which is assumed to
be powerful enough to perform a (usually linear) number of cryptographic operations
to verify the aggregate result. However, in our scenario, i.e., in case of large scale net-
work managed by a low/medium power entity, the complexity at the management entity
should be reduced as much as possible. In the following, we discuss only some related
protocols. In [16], Chan et al. propose a secure data aggregation scheme for SN and

10 This does not apply to every in-network data aggregation scheme.
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WSN. Overall, the algorithm incurs in O(∆ log2 n) node congestion, where node con-
gestion is the worst case communication load on each sensor node. Frikken et al. [19]
further reduces the node congestion of [16] to O(∆ log n), proposing a new commit-
ment structure. Unfortunately, both schemes impose a linear verification overhead on
the collector node, which needs to compute the XOR of all MACs created by end nodes.
A different approach is considered by Yang et al. in SDAP [34]. SDAP is a non-exact
mechanism which reduces the complexity of the verification while adding an (albeit
small) overhead on the data collector.

9 Conclusions
In this paper we present the design of SCIoT, a framework for scalable and secure IoT
device management. SCIoT represents the management process using an abstract finite
state machine, thus decoupling it from its specific domain. Based on this representation,
we design a protocol that allows devices to efficiently retrieve control messages, such as
commands or firmware updates, from the management control entity. Another important
feature provided by SCIoT is the ability for the control entity to monitor the status of
the managed devices (e.g., number of devices that are in a given state). This is done by
efficiently collecting device state information. Messages carrying device statistics are
securely aggregated by an inner aggregation network, to minimize communication and
computation complexity. Our evaluation shows the benefits of our approach in terms of
improved scalability and manageable overhead.
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