Secure Cloud Maintenance

Protecting workloads against insider attacks

anonymous

Abstract

Malicious insiders are a substantial risk for today’s cloud
computing infrastructures. A single malicious cloud ad-
ministrator can eavesdrop or damage business-critical
or personally identifiable information and computations
of thousands of cloud customers. To protect cloud users
against such insiders, we propose a novel approach that
enables a security team to protect privacy and integrity
of cloud users’ workloads against attacks by system
administrators during operation and maintenance. We
achieve this by managing the privileges of administrators
during operation and maintenance while re-establishing
the security of a compute node once administration is
completed. By default, administrators’ access to cloud
servers is disabled since cloud operation is automated.
For manual maintenance operations, we propose five
fine-grained privilege levels that balance the security
objectives of cloud users with the operational require-
ments of cloud administrators. We demonstrate how
existing cloud architectures need to be extended to in-
corporate our approach. We prototyped our management
approach using the OpenStack cloud platform. Policy
enforcement has been prototyped by leveraging SELinux
type enforcement in the KVM compute nodes, in order
to demonstrate the practical feasibility of our approach.

1. Introduction

In recent years, Cloud Computing has gained remarkable
popularity due to the economic and technical benefits
provided by this new way of delivering computing
resources. Businesses can offload their IT infrastructure
into the cloud and benefit from rapid provisioning,
scalability, and cost advantages. While cloud computing
can be implemented on different abstraction levels, we

[Copyright notice will appear here once ’'preprint’ option is removed.]

focus on Infrastructure Clouds such as Amazon EC2 [2]
that provide virtual machines, storage, and networks.

Although the benefits of Cloud Computing are evident
and end-users demand cloud services, security is a
major inhibitor [14] and various security risks have been
identified [4, 5]. A malicious insider, such as a cloud
administrator, can easily inspect the virtual machines
of cloud users and retrieve sensitive information [17].
Insider attacks are constantly identified as a high-impact
risk where a few malicious insiders can affect the security
of many users. Furthermore, this risk of insider attacks
is amplified by the fact that administration is often
outsourced and thus trust in administrators is sometimes
limited.

1.1 Protecting Cloud Users during Server
Maintenance

Solutions to combat insider attacks cannot rely on cryp-
tography alone [20]. While normal operations are auto-
mated and are based on trusted system management
processes [19], an open challenge is how to protect end-
users and their workloads during maintenance. In prac-
tice, maintenance requires substantial privileges and is
often performed manually. In particular resolving com-
plex problems requires full access where administrators
can see and modify all parts of a system. Today, no
technology can protect against insider attacks during
such maintenance activities.

Our focus is on today’s dark data centers that are
remotely managed and where only a few trusted ad-
ministrators have physical access to the servers. This
reduces the risk imposed by human-related mistakes (cf.
[21]) and allows to outsource system administration for
cost reduction. We introduce three administrator roles
where we require separation of duties. The first role is
the hardware maintenance team, which is the only one
allowed to access the datacenter and is responsible for
adding and removing hardware. The second role is the
security team that defines the security policy for the
datacenter. This includes approval of the infrastructure
cloud software executed on the systems. The third role
are remote maintainers. Their responsibility is to main-
tain the individual compute nodes. A particular task

2011/12/8



trusted

provisioning
observe

safe to
maintain

validate,
approve
& commit

untrusted
provisioning

Figure 1. State Diagram for a Compute Node per
Customer

is to perform problem determination and resolution by
logging into individual infrastructure elements. While
the first two groups are rather small, the latter main-
tenance team poses the biggest security risk since this
task requires a large team that is often outsourced and
delegated to cheap labor overseas.

We ensure that such remote administrators cannot
affect the integrity and confidentiality of customer work-
loads. Our approach is based on two key concepts. The
first is a consistent enforcement of the principle of least
privileges [18]: We define several levels of increasing
privileges that administrators can select. This allows
administrators to elevate their privileges as needed. De-
pending on the actual privileges chosen, we then protect
privacy and integrity of the workload during the com-
plete maintenance life-cycle. Furthermore, we reassess or
restore the integrity of the platform before returning the
compute node back into normal operation. Technically,
this required us to resolve two key challenges.

The first challenge is to ensure that for low privilege
roles the platform remains trusted under maintenance.
The second challenge is to ensure that once a platform
can no longer be trusted due to high privileged access
that does not guarantee any trusted computing base,
integrity can be restored and potential modifications of
the maintenance can either be approved as trusted by a
specific customer or else be removed.

Figure 1 illustrates the resulting life-cycle of our
systems. By default, a compute node is operating and
no operator can perform maintenance. If maintenance is
performed, the compute node is moved into maintenance
mode and its payload is protected. If the node is only
observed, then it can be rolled back into operation. If
changes were made that may affect the integrity of the
system, the node enters an untrusted state. This node
can re-enter production only after an externally verifiable
rollback or “approval and commit” of the performed
modifications.

Note that unlike existing proposals, we are able to
protect a core trusted computing base and thus do
not require special hardware such as Trusted Platform

Modules (TPMs). This makes our approach feasible for
commodity cloud infrastructures.

2. Requirements and Threat Model

We now specify our functional and security requirements
in detail. We do not cover the functional requirements
of the cloud platform and focus on the maintenance
requirements of the administrator and the security
requirements of the cloud user.

2.1 Maintainability Requirements of Cloud
Administrators

Protecting cloud users against malicious cloud admin-
istrators by entirely disallowing access to the Cloud
Computing infrastructure is only feasible during normal
operations when no problems occur. A new cloud archi-
tecture that protects users against insider attacks has
to balance between the security objectives of the users,
the functional requirements of the administrators, and
operational usability.

The following operations are common tasks for main-
tenance and trouble shooting of server systems: Reading
log files, configuration files, and system parameters; Mod-
ifying configuration files; Patching and Installation of
system binaries; Full administrative access for compli-
cated trouble-shooting (e.g., kernel related); Running ex-
isting or newly installed executables for testing purposes
and root-cause analysis. While some of these mainte-
nance tasks do not pose a threat to the end user, others
such as full access have the potential to violate security
and privacy of the cloud users.

2.2 Security Objectives of Cloud Users

Our main concern is the exposure of sensitive or person-
ally identifiable information belonging to the cloud users
to an administrator acting as a malicious insider. The
security objectives apply only to compute nodes, and
we exclude the network from our protection approach
since existing approaches, such as VPNs, can be applied
by the end-users.

Confidentiality requires that any remote adminis-
trator of the cloud provider must not be able to read
information stored or processed by the cloud user. This
includes information stored in memory and on the hard
disk. A cloud user may grant an exception to an in-
dividual administrator if required due to maintenance
reasons and prior informed consent is given by the user.
An example motivating such consent is a problem that
disappears once a VM is stopped and that cannot be
reproduced with a test VM. Integrity requires that
any remote administrator must not modify any data
or executables belonging to cloud users. This includes
the guarantee that the administrator cannot modify the
run-time platform in a way that is not approved by the

2011/12/8



security team. Availability: Any remote administrator
must not be able to degrade the availability of a compute
node except during maintenance operations.

2.3 Threat & Trust Model

We consider curious, careless, and malicious inside
attackers. We assume that an attacking administrator
wants to read and/or modify data belonging to a cloud
customer, which is stored or processed within the virtual
machine and storage of that particular user. Due to their
privileged role within the cloud provider, administrators
have access to the servers hosting the virtual machines
of the users. Typically this access is highly privileged
(root access) and allows inspection and modifications of
users’ virtual machines. Dark datacenters with remote
administration means that we assume that insiders
cannot attack the physical hardware, e.g., through
tampering.

Our aim is to protect against attacks by these remote
administrators and we assume that the following entities
behave correctly. Infrastructure Management Software
is responsible for acting upon requests from the user and
keeps state about the infrastructure. Cloud Provider’s
Security Team is responsible for approving server tem-
plates used for provisioning. In a high-security setting,
this assumption may be reduced by requiring template
approval from actual end-customers. Server Provisioning
is based on templates approved by the security team.
Other means of provisioning a server are disabled.

3. Extending an Infrastructure Cloud
Architecture

In this section we briefly present current and commonly
used architectures for infrastructures cloud using Open-
Stack as an example. We introduce our extensions to
these architectures in order to fulfill the goal of minimiz-
ing administrator privileges.

3.1 Current Architectures of Infrastructure
Clouds

We identified four components that are commonly used
in infrastructure cloud architectures. We illustrate the
overall architecture and explain the components in more
detail for OpenStack. However, other infrastructure
cloud architectures, such as OpenNebula or VMware’s
vSphere, are following the same principles. An architec-
ture overview is depicted in Figure 2.

Management Interface: The management inter-
face is responsible for serving requests from the infras-
tructure cloud users and forward these requests to the
appropriate components in the infrastructure. Typically,
the management interface is provided in form of a web

1 Figure from
architecture.html

http://nova.openstack.org/service.

object
store compute worker(s)

)

Y ——\

network controller(s)

Scheduler

API H
endpoints
volume worker(s)

Figure 2. OpenStack Architecture!

service or a specific API server. In the case of OpenStack,
the API endpoints fulfill the role of the management
interface.

Management Communication and State: The
management of infrastructure clouds is composed of mul-
tiple components interacting which each other. Further-
more, the state of the infrastructure clouds is required
for management decisions, e.g., for virtual machine place-
ment based on current load of compute nodes. In the
case of OpenStack, the queue provides a distributed
message queuing platform and the Scheduler maintains
a state of virtual machine placement.

Compute Nodes: These nodes provide computa-
tional resources to the cloud users in form of virtual
machines. In case a user requests a new machine, the
management infrastructure will select a compute node,
e.g., based on its current load, and provision a new vir-
tual machine for the user there. On each compute node,
an interface is provided in order to manage the compu-
tational resources on this particular node. The compute
workers fulfill this role in OpenStack.

Network & Storage Nodes Besides computational
resources, infrastructure clouds also provide network
and storage resources to cloud users. Similar to compute
nodes, there exist nodes providing network functionality
and nodes providing storage volumes, which are also
controlled via a management interface. In OpenStack,
network controllers and volume workers fulfill these roles
respectively.

3.2 Architecture Extensions for Minimizing
Administrator Privileges

We propose to extend current architectures of infras-
tructure clouds with the following components, in order
to achieve a minimization of administrator privileges.
Figure 3 illustrates the overall architecture.
Maintenance Agent: The maintenance agent (MA)
is the major component in realizing an infrastructure
cloud with minimized administrator privileges. It is
running on each compute node and is responsible for

2011/12/8


http://nova.openstack.org/service.architecture.html
http://nova.openstack.org/service.architecture.html

managing administrator privileges on such a node. The
maintenance agent extends the functionality of current
compute nodes and their management, and it is essential
for meeting the security objectives.

Maintenance Management: The management in-
terface has to be extended for the administrators, in
order to enable them to switch a compute node into
maintenance mode. The extended management interface
cooperates with the maintenance agent and the database
of trustworthiness for switching a node into maintenance
mode and record the trust level of that node.

Database of Trustworthiness of Compute Nodes:
In the case of maintenance of a compute node, the trust-
worthiness of this node might be reduced depending
on the cloud users’ trust towards the provider and the
criticality of their workloads. In addition, the system
needs to track what nodes are in production and what
nodes are in maintenance mode. Therefore, a database
is required that records the state and trustworthiness of
each compute node and is consulted during virtual ma-
chine placement, e.g., provisioning of a newly requested
VM or due to migration.

Virtual Machine Security Labels: We introduce
different security labels for virtual machines, in order to
differentiate between the criticality of the workloads. A
simple classification can be based on Low, Medium, and
High. The criticality influences the placement of virtual
machines when consulting the database of trustworthi-
ness. Furthermore, it will impact the cost of switching
from maintenance mode back to normal operational
mode of a compute node. This requires an extension to
the management interface and the management state,
in order to enable the specification and recording of
security labels.

Software & Template Repository: In order to
start with an initial trusted state of the compute nodes,
we assume a secure provisioning of the nodes with
a server template approved by the security team of
the cloud provider. In our architecture, we introduce
a repository for software and server templates that
is managed by the security team. All compute nodes
are provisioned by these templates and software can
only be installed from this repository. In most Linux
distributions signed software packages are the norm and
we can leverage this existing infrastructure.

4. Minimizing Privileges of
Administrators during Maintenance

In Figure 1 we illustrate the overview of the maintenance
life-cycle of a compute node. In this section we discuss
the different states in detail and describe how the state
transitions are performed. We propose a set of fine-
grained privilege levels an administrator can request to
enable maintenance tasks, and discuss how these levels

VM VM
High-securit Low-security
label label
L Compute
Software Provisioning & Noge
repository Installation |
Maintenance
Agent

Extended
Management Influences Trust.
Ngde VM placement Database

Figure 3. Extended Architecture Overview

can potentially impact the security objectives of cloud
users. We explain how privileges are elevated using our
maintenance agent and how eventually the impact of
privileged maintenance tasks can be assessed before
returning to a normal operational state.

4.1 Initial Trusted State

The initial state of compute nodes within the mainte-
nance life-cycle of a node is their normal operational
state. In that state, the system is trusted by assumption,
namely that the system was securely provisioned using
server templates approved by the trusted security team
of the cloud provider (cf. Section 2.3). Furthermore, ad-
ministrators have no privileges on the compute node
and the maintenance agent is running on that node.

4.2 Privilege Levels

Based on the analysis of the desired tasks and the
resources and permissions of the cloud platform, we
have identified five distinct privilege levels. The privilege
levels monotonically increase in capabilities, as well as
their potential impact, and are modeled in consideration
of the maintainability requirements of administrators
(ct. Section 2.1). An overview of the levels is given in
Table 1.

No access (Py): This level provides no privileges at
all on compute nodes and it is the default level for all
administrators. For this level no impact on the cloud
users’ security exists.

Read-only access (Prcqq): The next privilege level
provides read-only access on the compute node. The
purpose is to gather system data, e.g., log files or
system parameters, for initial investigations and trouble-
shooting. Read access to data related to cloud users’
virtual machines is prohibited, in order to maintain
the security goal of confidentiality. Since this level only
provides read-only access, the integrity of the users’ data
is not at risk.

2011/12/8



Level Capabilities Restrictions Security Impact
Py none all none
Pread read-only access No read to virtual machines related data none
Pyrite, | white-listed write access | Preqa’s restrictions apply. Modifications limited to | none
software installations, white-listed files, and certain
system parameters
Pyrites | black-listed write access | no modifications to bootloader, kernel, policy en- | potential disclosure and mod-
forcement, maintenance agent, file system snap- | ification of virtual machine
shots, package manager transaction logs, and cer- | data
tain system parameters
P full access none any disclosure and modifica-
tion of platform and data

Table 1. Overview of Privilege Levels

White-listed write access (Pyprite,): In this priv-
ilege level write access is allowed but limited with a
white-list approach, i.e., we are limiting writing to a set
of predefined files and resources. Preqq’s restrictions also
apply to this level. We are allowing software installa-
tion, update and removal, exclusively through a trusted
repository. The software modifications are recorded in
a package manager transaction log, that needs to be
protected against modification. Furthermore, we allow
the modification of a specified set of system parameters.

This level allows an administrator to install new
software or revert software to an older version, fine-
tuning system parameters, and changing configuration
files. Since only software from the trusted repository
(which has been approved by the security team) can
be installed and modifications of files and resources are
limited by a (conservative) white-list, the confidentiality
and integrity of cloud users data is not at risk.

Black-listed write access (Pyrite,): In the case
that the white-listed write access is still too restrictive
for the trouble-shooting process, we can increase in priv-
ilege level to a write access with a black-list approach.
Write access to any file or resource is allowed except for
the following vital system and security components: boot-
loader, kernel, policy enforcement, maintenance agent,
file system snapshots, package manager transaction logs,
and certain dangerous system parameters. Since a black-
list write access is much less restrictive compared to the
previous white-list approach, we expect potential impact
on the security objectives of cloud users. Therefore, the
measures that will be explained in Section 4.4 have to
be taken.

Full access (Px): At this level, the administrator
has full access to the system and no restrictions are
applied. Since an administrator can modify and read
anything on the system (including the kernel) the se-
curity objectives can not be maintained at this level.
Similar to Pyrite, , measures have to be taken for work-
load protection.

4.3 Policy Enforcement for Privilege Levels

The capabilities and restrictions of the privilege levels
discussed in Section 4.2 are specified in a security policy
that is enforced on each compute node. The privilege
levels are modeled as roles and administrators are dy-
namically assigned to these roles. The policy enforcement
system is based on Mandatory Access Control (MAC)
and Role-based Access Control (RBAC). An example of
such a policy enforcement system is Security Enhanced
Linuz (SELinux) [10], which we are using to illustrate
our security policy.

SELinux associates a security context with each
file, socket, device and process. A security context is
essentially a (user, role, type) triple that is either directly
specified, e.g., by labeling the files, or dynamically
computed by SELinux. The dynamic computation is
based on transition rules specified in a security policy. For
example, the policy can specify that a process created
by executing a file of type htipd_exec_t will transition
into the type httpd_t. In order to cope with fine grained
access control, the security policy also contains a white-
list of operations, such as executing a file, binding a
name to a socket, or sending a signal to a process. The
white-list allows these operations to be performed by
a given source type (such as a process) on a target
type (such as a file, device, socket or process). Basically,
SELinux policies uses these two essential mechanisms —
type transition rules and allow rules — to implement the
least privilege principle.

No access (Pp): The policy module implementing
this privilege level has no allow rules at all, which means
it will not allow any forms of login, e.g., spawn a system
shell.

Read-only access (P,¢qq): This is a restricted user

shell based on SELinux’s userdom,__restricted__user _template

macro, which creates a new role and type for restricted
users. Furthermore, access to system and process infor-
mation along with the read privilege on all file types
except any type related to virtual machines (i.e., having

2011/12/8



the attribute virt_domain or wvirt_image_type) have
been granted.

White-listed write access (Pyrite,): Resource
white-listing is done by specifying allow rules for the
corresponding types. We explain below how we allow
trusted software updates and modifications to selected
system parameters.

In most systems, package management is usually
not done directly by calling the package manager (rp-
m/dpkg), but by using a frontend (yum/apt-get). For
this domain type, the policy contains a rule allowing
execution of this frontend and a type transition rule
forcing this program to run under its own domain after
being started. The available repositories only contain
signed packages, and repository changes are not permit-
ted. New repositories could be added by modifying the
frontend’s configuration, but the administrator has no
write access to these files. Furthermore, unsigned bina-
ries could be installed using the actual package manager
(rpm or dpkg), but there exists no transition rules for
these package managers — only for the frontend — and
the installation would not succeed.

System parameters are usually changed using the
sysctl tool, but neither SELinux nor this tool does
permit granting access to selected parameters in a fine-
grained way. Some parameters can be used maliciously
by administrators to compromise the integrity of the
platform. Therefore, we construct a privileged wrapper
for sysctl, which allows access to selected system param-
eters, that can be invoked by the administrator instead
of the original sysctl tool. This is realized by giving the
wrapper access to the sysctl t type and specifying a
transition from the user’s domain type to the wrapper’s
domain type.

Black-listed write access (Pyrite,): The permis-
sions of this role are based on the unconfined SELinux
domain, whereby a process is permitted all operations
without any restrictions. Since SELinux’s policy descrip-
tion language does not provide deny rules, we associate a
protected__type attribute with types corresponding to the
kernel, boot process, maintenance agent and SELinux,
and write allow rules for operations on all types except
those with such an attribute. Since the types we are as-
sociating with the protected attribute could have allow
rules defined for other types, this user domain contains
no transition rules. To illustrate this with an example,
a yum process ran by an administrator won’t transition
into yum’s privileged domain type which would have
access, for example, to the kernel image files. Hence, ad-
ministrators can use yum to update all packages, except
those associated with protected types.

Full access (Ps): The user will be assigned to
SELinux’s unconfined role. This allows unrestricted

access to the administrator, while still keeping the
running services confined.

4.4 Privilege Elevation

By default administrators have no privileges (Py). Privi-
leges can then be gradually elevated. The maintenance
agent allows at most one administrator at the time to
perform maintenance on a compute node, in order to
prevent potential conflicts in the integrity recovery, as
well as auditing concerns. Figure 4 illustrates the overall
elevation process for the different privilege levels. In
this section we will discuss the generic steps involved in
the elevation of privileges. Furthermore, we will explain
the special transition between the Py ite, and Pyprite,
privilege levels, which has to cope with potential impact
on the cloud users’ security objectives.

consent?

Yes

P@ Prsud Puw‘if,eo No Rurite. Poo

migrate

Figure 4. Overview of Privilege Elevation Process

Generic Elevation The Maintenance Agent provides
an interface that allows an administrator to elevate
his privileges from the current level to the next one.
The ordering of privilege levels is shown in the chain-
like illustration of Figure 4. Elevating privileges means
that the administrative user is assigned to an SELinux
user type, which is associated with the role type in the
policy enforcement system that possesses the required
privileges. This assignment to roles is generally sufficient
for elevating to the next privilege level except for the
transition from Pyrite, t0 Pyrite, -

User Consent and Virtual Machine Migration
(Purite, = Puwrite,) In the case of the transition be-
tween Pyrite, and Pyprite,, We have to introduce addi-
tional mechanisms during the elevation, in order to cope
with the potential impact on the cloud users’ security
objectives. We introduce the principle of a user con-
sent that allows cloud users, who have virtual machines
running on that particular compute node, to assess the
impact of a privilege elevation and provide a consent
that their virtual machines remain on the host. Imagine
a scenario that a cloud user experiences problems with
the cloud infrastructure and the problem only arises in
combination with his workload. The user can consider
to give their consent that an administrator gains Py rite,
privileges, while the virtual machines remain on the host,
for trouble-shooting purposes.

2011/12/8



We envision that the user consent can be obtained
by the maintenance agent in the form of sending an
email to all the users served on the particular compute
node. The email contains a link to a web service call at
the cloud provider, which requires user authentication,
that would redirect the user consent to the maintenance
agent. Incorporating a nonce, i.e., a random value, in the
link would guarantee the freshness of the user consent.
In order to have a more efficient consent process, the
maintenance agent and the cloud user can consider the
Virtual Machine Security Label (cf. Section 3.2): for Low
implicit consent is given, for Medium either the security
team or an automated decision at the cloud user side
can be done, and for High a human administrator has
to make the decision.

In the case that a user does not provide their con-
sent, e.g., due to explicit deny or due to time-out, the
corresponding virtual machines are securely migrated to
a different compute node. The migration has to contact
the Database of Trustworthiness of Compute Nodes (cf.
Section 3.2), in order to decide on the selection of the
target compute node. Furthermore, the maintenance
agent has to record the untrustworthiness of the current
compute node for the particular user in the database.
Remaining traces of a virtual machine, e.g., swap storage
and access to shared storage, have to be removed. For
performance reasons, compute nodes have swapping dis-
abled, therefore no traces are left in swap storage. Access
to shared storage need to be revoked by the maintenance
agent.

Limiting Privilege Exhaustion We are following
the least privilege principle for the maintenance tasks,
i.e., an administrator should only obtain the privileges
required for a specific task. Therefore, administrators
start in Py and have to gradually increase their privileges;
instead of elevating privileges immediately from P to
P... Furthermore, a barrier for the elevation needs to be
introduced, in order to prevent gradual but immediate
elevation to P,,. This barrier can be implemented as
a time delay, i.e., the administrator has to wait before
the next elevation, obtaining approval from another
administrator, or by audit logs where each administrator
logs a reason for the requested privilege.

4.5 Privilege Revocation and Recovery

Revocation of privileges is the counterpart to the eleva-
tion described previously. However, privilege revocation
alone is not sufficient for guaranteed return to an initial
trusted state once a maintenance task is completed. Our
system has to assess the modifications performed during
the maintenance task and act on these modifications
based on the recovery strategy selected by the adminis-
trator. The administrator can decide between rollback
and commit. Rollback dismisses all modifications to the

system performed during the maintenance. These modi-
fications can affect the state of the machine (processes,
system parameters) and data at rest (files on disk). On
a contrary, commit allows to keep the modifications, but
they have to be approved by the cloud users and/or the
security team using a consent process.

Figure 5 illustrates the overall revocation and re-
covery process when revoking privileges from P =
{Pread; Puwrite, s Pwrites, Poo} back to Py. The rollback
recovery eventually leads back to a trusted state. Recov-
ery using commit however might lead to an untrusted
state when the user consent is not obtained. For P, rite,
and P,, we can only perform a partial commit recovery
(illustrated by the dashed edges), because modifications
of the system state cannot be detected under the in-
fluence of such a high privilege access. The revocation
is performed analogously to Generic Elevation in Sec-
tion 4.4, i.e., the administrative user is assigned to the
role of privilege level Pj by the maintenance agent. In
the following we describe the recovery process.

rollback trusted

Yes untrusted
Preadv Purriteo

N
Pwrite.7 P >l No
commit consent?

Figure 5. Overview of Revocation and Recovery Pro-
cess

Preparing Recovery during Privilege Eleva-
tion: Before elevating to privilege levels that have write
access, i.e., Pyrite,, Puwrite,, and Py, the maintenance
agent has to initiate the creation of a snapshot of the
system. This snapshot covers data at rest (file system
snapshot) and the system state (processes, system pa-
rameters). For Pyrite, and Pyrize, One can create a
system snapshot locally that will be protected by the
policy enforcement. A snapshot of the file system can
be created using the logical volume manager (LVM) or
snapshot functionality in modern filesystems, such as
Btrfs?. We also have to take a snapshot of the run-time
system parameters (e.g., using sysctl). In the case of
P, where the administrator has full access and the snap-
shots cannot be protected locally anymore, we either
create the snapshot remotely or use the more expensive
recovery strategy of re-provisioning. Remote snapshot re-

2https://btrfs.wiki.kernel.org/index.php/Main_Page

2011/12/8


https://btrfs.wiki.kernel.org/index.php/Main_Page

quires that compute nodes are using an external storage
provider.

Recovery from Read-only Access (P,eqq): Read-
only access with program execution privilege only leads
to modifications of the system state, i.e., running pro-
cesses. This could impact the availability of the compute
node, e.g., due to a started process with high resource re-
quirements, therefore the recovery mechanism is needed.
The maintenance agent identifies programs started by
the administrator based on the process’ security con-
text, where the user equals the administrator. Rollback:
Processes started by the administrator are killed. Com-
mit: Processes started by the administrator need to be
verified. The following information is sent to the veri-
fiers: hash of the binary, binary for download, program
arguments.

Recovery from White-listed Write Access
(Puwrite,): Using the snapshot of the file system, we
generate a diff between the current file system and the
snapshot. Furthermore, we generate a diff between the
system parameters using the system snapshot. Roll-
back: Changed files are replaced by their copies from
the snapshot. Using the transaction log of the package
manager, we can rollback all modified packages. Sys-
tem parameters are restored with the values recorded
in the snapshot. Recovery from started programs is
also applied (cf. Ppcqq recovery). If there exists changes
in configuration files, we use the packages meta-data,
i.e., which files belong to a package, to identify the
corresponding service and restart it after reverting the
configuration file. Commit: Updates to files and system
parameters as well as the transaction log of the package
manager are sent to the verifier for review. The commit
from P,¢.q recovery also applies.

Recovery from Black-listed Write Access
(Pwrite,): Recovering from Py.ie, is similar to the
Pyrite, recovery. However the system state cannot be
assessed, because arbitrary changes to binaries are pos-
sible, e.g., modifying processes in memory. Rollback:
Same file system rollback as shown for P, .. A re-
boot is required to rollback the changes in the state.
Commit: Same file system commit as shown for Pyrite, -
A commit for the system state is very challenging and
practically not feasible, because we would need to de-
tect in-memory modifications of processes. Therefore a
reboot is required.

Recovery from Full Access (P ): The recovery
from P, is the most expensive operation, because of the
large possible impact of this high privileged access. Two
possible strategies are available: recovery using remote
file system snapshots or re-provisioning. Rollback: A
reboot is required to rollback the system state. For file
system rollback, we either revert from a remote snapshot
or re-provision the node. Commit: In the case of remote

snapshots, a file system diff can be computed on the
storage node and send to the cloud users. Otherwise,
commit is not available for the file system. It is also not
available for the system state (cf. Pypite, )-

Returning to a Trusted State: The objective of
the revocation and recovery process is to return from the
maintenance mode back to an operational and trusted
state. Figure 5 illustrates that the rollback recovery
strategy leads to a trusted state after the privileges are
revoked back to Py. Alternatively, the commit recovery
involves a user consent approach similar to the one
introduced in the elevation (cf. Section 4.4). Based on
the Virtual Machine Security Label we can achieve a
more efficient consent process that also places less burden
on the end-users: for Low implicit consent is given, for
Medium either the security team on behalf of the user
or an automated decision at the cloud user side give
consent, and only for High a human administrator has
to make the decision.

Each user (or a delegated authority) that is or was
hosted on that particular compute node has to approve
the modifications performed during the maintenance
task. Depending on the outcome of the consent process,
the system is in a trusted or untrusted state from each
user’s perspective. In the case that there still exist virtual
machines, which belong to a user who did not give
consent, these VMs have to be migrated away. Overall,
this might lead to a scenario where a compute node
is both in a trusted and untrusted state for multiple
users. This trust fragmentation of the system degrades
its efficiency. Therefore the security team should employ
a “garbage collection” process, where administrators are
asked to either integrate their changes into an official
server template or the affected nodes are re-provisioned.

In the case that a trusted state is reached, the
trustworthiness of the compute node is updated for
the users that provided consent in the trustworthiness
database. When the system recovers from P,yite, Or
P, the virtual machines that were migrated away
during elevation are migrated back. In the case of an
untrusted state, this compute node remains unusable
for the affected users.

5. Security Discussion

We now discuss the actual security achieved by our
system. We aim at satisfying the security objectives
described in Section 2.2 based on the mechanisms
described in Section 4. Our focus is to prevent mis-use of
obtained privileges. We do not consider attacks through
physical attacks, platform vulnerabilities, and covert
channels since both are orthogonal to our approach.
We discuss how each privilege level may impact the
security goals of integrity, availability and confidentiality,
and how we ensure that the impact is mitigated by our

2011/12/8



system. Py is the trivial case with no privileges, therefore
no impact on the security goals exists.

5.1 Integrity

The first objective is integrity. This includes integrity of
all resources (memory, disk, networks) as well as integrity
of the computing platform. However, in our approach we
exclude integrity of network resources and the cloud user
should employ other protection means, such as Virtual
Private Networks.

Read-only access (P,cqq) prohibits write modifica-
tions and the integrity of the platform and resources is
ensured. Furthermore, we prevent read access to users
related data that might contain other forms of access
credentials with write privileges. However, the adminis-
trator is allowed to execute programs that have to be
terminated once the maintenance is completed.

White-listed write access (Pyite, ) is tightly con-
trolled and limited to modifications of white-listed files
and system parameters, and software installations. The
integrity can be restored in the rollback process by
replacing modified files with copies from a snapshot,
restore system parameters to previous values, and roll-
back all software installations using a package manager
transaction log. The integrity of the snapshot and the
transaction log is ensured by the policy enforcement
system. Modifying system parameters could amplify the
risk of software vulnerabilities due to the disablement of
protection mechanisms. However, we are not concerned
about software vulnerabilities in our approach.

Black-listed write access (Pyrite,) allows any
modifications except of vital system and security com-
ponents, namely, bootloader, kernel, policy enforcement,
maintenance agent, snapshots, package transaction logs,
and dangerous system parameters. The integrity of user
related data cannot be ensured at this privilege level
anymore, therefore the workload is either migrated away
or the user accepts the risk by giving consent. Migra-
tion has ensured that all traces of the workloads are
removed, i.e., swap files are disabled which could con-
tain old memory pages and access to shared storage is
centrally disabled. Overall it is crucial that the adminis-
trator cannot modify the policy enforcement, which we
ensure by prohibited access to any SELinux related data.
Integrity of the platform’s file system can be restored
by the rollback process (cf. Pyrite, ), but it requires a
correct and thereby protected maintenance agent as well
as protected snapshots and transaction logs. The state
of the system can be arbitrarily modified, e.g., by modi-
fying programs directly in memory, therefore a reboot
ensures a rollback of the system state. Since the boot-
loader and kernel are protected, a reboot will lead to a
trusted state again.

Full access (P) allows any modifications to the
platform. User data was either migrated away or the

user accepted the risk before entering P,yrite, . Platform
integrity can only be restored by reboot and provisioning
or reverting of remote snapshots. We are aware of poten-
tial attacks that could circumvent the re-provisioning
process, i.e., stealth and persistent malware such as an
attack demonstrated by Wojtczuk and Rutkowska [23].
However, these are out of scope for our approach and
fall in the category of platform vulnerabilities.

5.2 Confidentiality

Confidentiality requires that an administrator cannot
see payload data of the users of the virtual infrastructure.
This includes memory, disk and snapshots of past disk
contents, processor state, log-files, and network traffic.
A pre-condition of confidentiality is the integrity of the
platform; if an administrator can modify the platform,
then it may remove policy enforcement mechanisms.

Read-only access (Preqq) is restricted by prohibit-
ing access to cloud users related data, which have their
own specific label in SELinux. This includes the proces-
sor state and memory, as it is represented as a process
with the SELinux label, as well as disks that are stored
as labeled files. Similar to the integrity discussion of
P,.cqdq, the risk of successful exploitation of software vul-
nerabilities could be increased by being able to read
certain system parameters, e.g., reading memory maps
of processes could defeat random address space layouts
(ASLR3). In our approach, we do not consider the con-
fidentiality of network traffic. Furthermore, log files in
the hypervisor may only contain high-level information
about the customer workloads, e.g., resource require-
ments, but not the actual workload or other sensitive
information of the cloud users.

White-listed write access (Pyrite, ) has the same
impact on confidentiality as Preqq, which is covered by
our approach.

Black-listed write access (Pyrite, ) has potential
impact on the confidentiality of cloud users data due
to the possibility of platform changes. Therefore, the
same measures apply as used for the integrity protection,
namely, virtual machine migration or user consent.

Full access (P.,) allows any disclosure of informa-
tion, but user related data was either migrated away or
consent was given.

5.3 Awvailability

The availability of a compute node can only be negatively
influenced by an administrator when modifying the
system state or the file system. For example, a process
can be started that consumes all the resources on the
node or modifications causes problems on the platform.
Therefore, availability is tightly connected to platform
integrity, and the integrity rollback will also ensure that

Shttp://pax.grsecurity.net/docs/aslr.txt

2011/12/8


http://pax.grsecurity.net/docs/aslr.txt

availability returns to the prior level once maintenance
is completed.

6. Implementation

Our prototype implementation is based on the open-
source cloud platform OpenStack*. The maintenance
agent is written in 200 lines of Python and has a RESTful
API for providing the maintenance functionality. For the
interaction with SELinux, e.g., for role assignment of
users, we are leveraging the SELinux’s Python interface.
We are highlighting the implementation details for
performing a commit operation with user consent. In
order to assess the modifications, the agent performs
the following operations: compute a diff between the
sysctl settings before and after the maintenance; generate
a list of filesystem changes by running rsync against
the snapshot: for binaries we provide a hash, for non-
binaries a text diff; determine programs started by
the administrator by iterating /proc and looking for
process IDs with the inherited administrator’s user label;
generate a list of package changes using yum’s internal
transaction log. The assessed modifications are collected
in an email that is sent to the compute node users with a
link to the agent’s web interface for approval or rejection.

7. Related Work

This paper focuses on the security of infrastructure
clouds. We build on related work from several areas:
Virtual systems security aims at reducing the security
risks introduced by virtual machines, network, and
storage. Trusted computing enables stakeholders to
verify the integrity of given IT systems. We focus on
linux-based virtual machine monitors. As a consequence,
a final area of related work are Linux security policies
and their enforcement.

Infrastructure Cloud Security: The first area of
related work is security of virtual machine monitors. Vir-
tual systems introduce several new security challenges
[7]. This knowledge is needed to underpin the user’s
individual decisions whether to trust a given compo-
nent. Analysis of well-known attacks such as jailbreaks
[22] allows one to detect vulnerable configurations. This
includes information leakage vulnerabilities of today’s
infrastructure clouds that allow covert or overt communi-
cation between multiple tenants that should be isolated.
Examples include co-hosting validation [16] and cache-
based side channels [1, 15]. While these vulnerabilities
are important in practice, they are orthogonal to our
approach. Our goal is to prevent insiders from obtain-
ing additional means of attack. We accept the fact that
insiders can act as end-users and exploit potential vul-
nerabilities to attack a given system.

4http://www.openstack.org

10

SELinux in Infrastructure Clouds: SELinux is
used in many projects to provide fine grained access
control: it is for example included by default in the
widely used Red Hat Enterprise Linux distribution,
mostly providing an additional sandboxing layer for
various services that can be run on a Linux server. As
such, it is not surprising that it SELinux and other
MAC technologies are used in infrastructure clouds [3, 9],
mostly to enforce isolation of resources that are shared
among cloud users (multi-tenancy). In contrast, we use
SELinux for restricting administrative privileges.

Trusted Computing and Virtual Infrastruc-
tures: For Linux-based virtualization platforms such as
KVM and Xen, important pieces of related work are [11—
13] where a software architecture based on Linux is
proposed that provides attestation of all executables
and configuration files. Another approach to use trusted
computing for verifying virtual infrastructures has been
proposed in [6] where tamper-proof hardware is vir-
tualized to allow for multiple concurrent yet isolated
protected VMs. In [19] the authors have sketched how to
use trusted computing for validating a cloud infrastruc-
ture. While each of these approaches provides certain
assurance to the end users, none provides a concept for
securing the maintenance of such clouds. As a conse-
quence, they are useful during normal operations but
only manage to declare a system untrusted once it is
maintained.

8. Conclusions and Future Work

In this paper we have mitigated the threat of insider
attacks by remote administrators in dark datacenters.
Unlike other approaches, ours is applicable to commodity
cloud infrastructures such as OpenStack or OpenNebula.
In contrast to existing security concepts for clouds, our
approach includes maintenance, does not require special
hardware, and does not have significant impact on the
efficiency of the infrastructure cloud.

While we addressed the challenge for compute nodes,
some open questions remain. The first is to develop a
similar concept for storage nodes and their administra-
tors. Our concept uses storage nodes as a building block
without elaborating how to securely maintain them. In
particular, protecting also storage nodes against inside
attackers would be desirable. A second area of further
investigation is to further validate our concept. This
includes evaluation in large-scale practical field studies
as well as a formal evaluation of the SElinux policies
similar to [8].

References

[1] ActigMEZ, O. Yet another microarchitectural attack:
exploiting i-cache. In CSAW ’07: Proceedings of the

2011/12/8


http://www.openstack.org

2007 ACM Workshop on Computer Security Architecture
(2007), ACM, pp. 11-18.

[2] AMAZON. The Amazon Elastic Compute Cloud (EC2).
Available at http://aws.amazon.com/ec2/, last ac-
cessed March 2010, 2010.

[3] BAlARDI, F., AND SGANDURRA, D. Securing a com-
munity cloud. In Proceedings of Distributed Computing
Systems Workshops (ICDCSW) (june 2010), pp. 32 —41.

[4] CLoUD SECURITY ALLIANCE. Security Guidance for
Critical Areas of Focus in Cloud Computing, December
2009.

[5] ENISA. Cloud Computing Risk Assessment. Tech. rep.,
ENISA, 2009.

[6] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM,
M., AND BONEH, D. Terra: A Virtual Machine-Based
Platform for Trusted Computing. SIGOPS Oper. Syst.
Rev. 87, 5 (2003), 193-206.

[7] GARFINKEL, T., AND ROSENBLUM, M. When Virtual is
Harder than Real: Security Challenges in Virtual Ma-
chine Based Computing Environments. In HOTOS’05:
Proceedings of the 10th conference on Hot Topics in Op-
erating Systems (Berkeley, CA, USA, 2005), USENIX
Association, pp. 20—20.

3

JAEGER, T., SAILER, R., AND ZHANG, X. Analyzing
integrity protection in the selinux example policy. In
Proceedings of the 12th conference on USENIX Security
Symposium - Volume 12 (Berkeley, CA, USA, 2003),
USENIX Association, pp. 5-5.

Kurmus, A., GupTa, M., PLETKA, R., CACHIN, C.,
AND HaAs, R. A comparison of secure multi-tenancy
architectures for filesystem storage clouds. In Proceedings
of the 12th International Middleware Conference (2011).
To appear.

=

[10] Loscocco, P., AND SMALLEY, S. Integrating flexible
support for security policies into the linux operating
system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference (June 2001),
USENIX Association.

[11] MAcDoONALD, R., SMITH, S., MARCHESINI, J., AND
WILD, O. Bear: An open-source virtual secure coproces-
sor based on TCPA. Tech. Rep. TR2003-471, Depart-
ment of Computer Science, Dartmouth College, Hanover,
NH, USA, 2003.

MARCHESINI, J., SMITH, S. W., WILD, O., AND MAC-
DonNALD, R. Experimenting with TCPA/TCG hardware,
or: How I learned to stop worrying and love the bear.
Tech. Rep. TR2003-476, Department of Computer Sci-
ence, Dartmouth College, 2003.

[12

[13

MARCHESINI, J., SMITH, S. W., WILD, O., STABINER,
J., AND BARSAMIAN, A. Open-source applications of
TCPA hardware. In 20th Annual Computer Security Ap-
plications Conference (Washington, DC, USA, December
2004), ACM, IEEE Computer Society, pp. 294-303.

[14] MELL, P., AND GRANCE, T. Effectively and Securely
Using the Cloud Computing Paradigm, October 2009.

11

[15] PERCIVAL, C. Cache missing for fun and profit. http:
//www .daemonology.net/papers/htt.pdf, May 2005.

[16] RISTENPART, T., TROMER, E., SHACHAM, H., AND
SAVAGE, S. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds.
In CCS ’09: Proceedings of the 16th ACM conference
on Computer and Communications Security (New York,
NY, USA, 2009), ACM, pp. 199-212.

[17] RocHA, F., AND CORREIA, M. Lucy in the sky without
diamonds: Stealing confidential data in the cloud. In Pro-
ceedings of the 1st International Workshop on Depend-
ability of Clouds, Data Centers and Virtual Computing
Environments (DCDV, with DSN’11) (June 2011).

[18] SALTZER, J. H., AND SCHROEDER, M. D. The protection
of information in computer system. Proceedings of the
IEEE 63,9 (1975), 1278-1308.

[19] SanTOS, N., GumMADI, K. P., AND RODRIGUES, R.
Towards trusted cloud computing. In Proceedings of
the 2009 conference on Hot topics in cloud computing
(Berkeley, CA, USA, 2009), HotCloud’09, USENIX As-
sociation, pp. 3-3.

[20] VAN Duk, M., AND JUELS, A. On the impossibility
of cryptography alone for privacy-preserving cloud com-
puting. In Proceedings of the 5th USENIX conference
on Hot topics in security (Berkeley, CA, USA, 2010),
HotSec’10, USENIX Association, pp. 1-8.

[21] WEISMAN, R. Dark Data Center Design .
Vol.28 Issue 35, Sep 2006.

[22] WouTczuk, R. Adventures with a cer-
tain Xen vulnerability (in the PVFB back-
end). http://invisiblethingslab.com/pub/
xenfb-adventures-10.pdf, October 2008.

[23] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking smm
memory via intel® cpu cache poisoning. Tech. rep.,
Invisible Things Lab, 2009.

Processor

2011/12/8


http://aws.amazon.com/ec2/
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
http://invisiblethingslab.com/pub/xenfb-adventures-10.pdf
http://invisiblethingslab.com/pub/xenfb-adventures-10.pdf

