
Multi-Level Security for Service-Oriented Architectures

HariGovind V. Ramasamy and Matthias Schunter
IBM Zürich Research Laboratory

Rüschlikon, Switzerland
{hvr,mts}@zurich.ibm.com

June 19, 2006

Abstract

Multi-level security (MLS) is a well-established and thoroughly studied approach towards security.
Service-oriented architectures (SOA) are emerging in the commercial world and promise increased flexi-
bility and better interoperability. While both concepts have substantial merit, there is no well-established
approach for combining both. In this paper, we describe how to provide multi-level security in a service-
oriented architecture. First, we propose a conceptual design for multi-level security in a service-oriented
architecture. We then describe how this model can be realized in today’s defense networks that are
structured into mutually isolated network zones with different confidentiality classifications.

1 Introduction

There is an increasing interest to move network-centric defense applications to service oriented architec-
tures (SOA) [8]. While this move has the potential to yield improved flexibility and inter-operability within
forces and coalitions, a sound approach towards security in such architectures is still missing. In the con-
text of military applications, security policies have been dominated by the concept of multi-level security
(MLS) [5][7][6][16]. MLS policies aim to enable free information flow between authorized subjects and
prevent disclosure to unauthorized subjects. Enforcement of these policies is based on classification and
labeling of subjects (such as users, machines, network zones, etc.) and (data) objects. Classification labels
(such as unclassified, restricted, confidential, secret, and top secret) identify the sensitivity level of the data
and the clearance level of the subjects.

We address the problem of providing multi-level security in a service-oriented architecture. Today’s
military security architectures are structured into physically isolated “stovepipes” of different classifications
and suffer from substantial inflexibility. Multi-level services that can act on multiple classification levels
are hard to build with sufficient assurance and are therefore uncommon. Furthermore, there are no well-
defined automated mechanisms for altering the assigned classification level of the data. For example, down-
classification (or de-classification) of data is mostly done manually through trusted operators and is error-
prone.

Our design decomposes MLS flow-control enforcement into a small number of individual high-assurance
services. Our design enforces a clean separation between integrity classification and confidentiality classi-
fication of both subjects and objects. This increases the flexibility of handling data. For example, whereas
high-confidentiality data can be traditionally handled only on high-integrity systems, in our design, any data
after appropriate transformations (such as encryption and authentication) can be handled on a system of any
integrity classification.

1



Physical Infrastructure
Logical Infrastructure

Services
Business Processes

Figure 1: Layered System Model

The rest of the paper is structured as follows. In Section 2, we present the abstraction layers of the
high-level system model in which our design was carried out. In Section 3, we define our conceptual
model for multi-level security in a service-oriented architecture and discuss the MLS-enablement of the
main abstraction layer we focus — the services layer. Section 4 describes details of the architectural entities
that are needed to implement the conceptual model. Section 5 describes how the conceptual model is realized
by the describing the interaction between the services proposed in Section 4. The resulting design enforces
a clean separation between a small number of high-assurance services and the other components of the
service “brokering” infrastructure. As a result, the security-criticality1 of the bulk of the service brokering
infrastructure can be significantly reduced. Section 6 presents a discussion on how some special cases and
challenges can be handled. Finally, Section 7 summarizes our key contribution and concludes the paper.

2 High-Level System Model

Figure 1 depicts the simplified overall system model in which we operate. Higher layers provide a higher
level of abstraction: The physical infrastructure layer represents the physical infrastructure, i.e., all physical
physical machines (servers, satellites, cell phones, firewalls, VPN appliances, etc.), physical zones, and
physical networks. The logical infrastructure layer comprises logical systems and logical networks and
includes technologies like virtual machines and VLANs. The services layer provides services using business
applications. These web-services based on the SOAP [1] form the core of the service oriented architecture.
Services handle data and associated metadata. On top of the data layer is the business processes layer which
provides configurable business processes that orchestrate services by flexibly composing individual services
and decision functions into business flows.

Previous work has explored how to apply MLS up to the logical infrastructure layer [10]. In this paper,
we take the next step of MLS-enabling the services layer. This requires introduction of metadata that assigns
security classifications to all architectural entities (such as services, platforms, machines, etc.) across all
layers. The classification is done in two dimensions: confidentiality (or sensitivity) and integrity (or trust in
the pedigree).

Entities at the higher abstraction layers rely upon entities at the lower layers to correctly provide their
functionalities. A service depends on the logical platforms it is deployed in, the platforms in turn rely on the
physical infrastructure hosting them, and so on. The classification of an entity at a higher layer can only be
as high as the classification of the lower layer entities that it relies on.

We distinguish between single-level and multi-level entities. Legacy entities that are not classification
aware are called single level. Single-level entities are entitled to handle and generate data with the same
confidentiality and same or lower integrity classification as the entities themselves. Data that is modified
by a single-level entity inherits the entity’s classification. Data with a higher or lower confidentiality than

1Mouratidis and Giorgini define security criticality [12] as the “measure of how the security of the system will be affected if the
security constraint is not achieved.”

2



Service Broker

Service Service ServiceService

Secret Confidential Unclassified

Figure 2: Conceptual Design of Multi-Level Service Interaction

the entity must undergo appropriate transformation before being handled by the entity. For example, data
with a higher-confidentiality classification than the entity can only be stored at the entity only after down-
classification or appropriate encryption. Similarly, data with a lower-confidentiality classification than the
entity can be handled by the entity after being properly authenticated to prevent undetectable modification
of the data.

Like a single-level entity, a multi-level or MLS entity has an associated classification. However, unlike a
single-level entity, a MLS entities can handle and generate data with confidentiality level that is equal to or
lower than their own and can assign integrity levels (to data) up to their own. MLS entities are classification-
aware, i.e., they can process classification-related metadata attached to data (as explained later in Section 3)
and they attach classification-related metadata to all data they generate.

An important issue in multi-level entities is providing sufficient isolation between the various classifi-
cation levels. We believe that the complexity of isolating various classification levels with reasonably high
assurance gets harder as we move up in the stack of layers. Today’s state-of-the-art virtualization technolo-
gies [4][13][14] (virtual machines monitors, VLANs, remote VPNs) can be used to provide a certain level
of isolation among classification levels at the logical infrastructure level while sharing physical resources.
Leveraging this fact and notwithstanding the presence of legacy (single-level) services, the focus of this pa-
per is to enable multi-level security at the services layer using a very small number of high-assurance MLS
services.

3 A Model for Multi-level Secure Services

Figure 2 shows our conceptual design of multi-level secure service interaction. The different shades (white,
grey, and black) are used to indicate different confidentiality levels. Shaded circles and semi-rings are used
to depict output and input ports respectively. A service broker helps in the discovery of services and acts as
a mediatory between service requesters and service providers, which may belong to the same or different
classification levels. The service broker must implement mechanisms for enforcing flow control policies
that allow for appropriate protection of sensitive information. For example, in Figure 2, the flow from
unclassified service to the confidential service and the flow from the confidential service to the secret service
must be allowed only after the data from the originator has been up-classified. Similarly, the flow from the
confidential service to the unclassified service must be allowed only after the data from the originator has
been down-classified. On the other hand, there may be free information flow between two services belonging
to the same classification level (e.g., the two unclassified services in Figure 2).

There are two main steps involved in MLS-enabling the services layer. One is definition and manage-
ment of MLS-related metadata and the other is the specification of security policies. In this section, we
discuss these two steps. Later in Section 4, we describe the building blocks for the concrete realization of
an MLS service broker, and in Section 5, we describe how the services interact with the components of the
service broker to realize a MLS service-oriented architecture.

3



Entity A’s Policies
must may should not must not

Entity B’s Policies

must must must must conflict
may must may should not must not

should not must should not should not must not
must not conflict must not must not must not

Table 1: Example of DAC Conflict Resolution Using Well-defined Priorities

3.1 Metadata Management

Data is the input and output of services. Metadata gives information about the data. We use metadata
to indicate information about the associated data that is needed for enforcing security policies. Metadata
can provide information about the data classification (through confidentiality and integrity labels explained
below), the data access policy (e.g., rule-based or lattice-based), authorization (read, write, or execute)
among other things. In addition, metadata may indicate special policies, e.g., whether the data is readily
available to a role, obtainable to the role after explicit on-line authorization, or not obtainable except through
special offline delegation.

Confidentiality labels and integrity labels are two important types of metadata that are associated with
all data items input and output to services. The confidentiality label attached to a data item indicates the
sensitivity of the data item to unauthorized disclosure, i.e., it indicates the seriousness of the potential fallout
resulting from the unauthorized disclosure of the data item. Without loss of generality, we consider three
kinds of confidentiality labels: secret, confidential, and unclassified. Integrity labels give an indication of
the assurance provided by the entities that have generated or handled the data item in the past. Again, we
consider three kinds of integrity labels: high, medium, and low.

As mentioned before, all entities in the layered architecture of Figure 1 are also classified, and hence
have associated confidentiality and integrity labels. The classification determines the maximum confiden-
tiality level of the data that an entity can contain/handle (e.g., a confidential service can contain/handle
confidential and unclassified data, but not secret data) and identifies the default confidentiality and integrity
level that is assigned to data created by the entity. The integrity classification assigned to an entity indi-
cates the trustworthiness of the entity (determined, for example, through assurance assessment and from
the protection level of the entity). Normally, an entity (e.g., a service or platform) that is higher classified
confidentiality-wise would also be higher classified integrity-wise. That is because, an entity handling data
of higher confidentiality level must have sufficient level of assurance and protection. Thus, in Figure 2, the
services with confidentiality levels secret, confidential, and unclassified would have integrity levels high,
medium, and low, respectively.

Classification-enablement of data can be done at varying levels of granularity, and determining the right
granularity is a major challenge. At one extreme, every byte of data generated by every entity can have
associated metadata indicating the classification; however, that is likely to have significant negative effects
of performance. A more reasonable granularity can be obtained by implicitly interpreting the classification
of data to be the same as that of its originator (implicit labeling) and explicitly attaching the classification
metadata (explicit labeling) only when the data has to move across classification zones or when the clas-
sification is meant to differ from this implicit label. For example, explicit labeling is used if the recipient
has a different classification than the originator or if the data’s originator wants to consciously decrease the
integrity level of the data. Explicit labeling is also useful when different parts of the same document have
to be classified differently. For example, consider an XML document in which certain paragraphs are to
be marked secret, whereas others are confidential or unclassified. XML allows structuring data hierarchi-

4



cally as an XML tree and different subtrees may have differing explicit labels depending on the desired
confidentiality classification.

It is important to maintain the integrity of metadata. In particular, undetectable modification of metadata
should not be possible. One way of ensuring that undetected metadata modification cannot occur is through
cryptographic authentication by using a message authentication code (MAC) or a digital signature.

There are multiple ways to associated data and metadata. Conceptually, we assume the data and asso-
ciated metadata are transported and stored together. For example, in a service-oriented architecture, it is
straightforward to define an XML data exchange format that carries payload data along with its metadata
in a single XML structure (e.g., <envelope><payload/><metadata/></envelope>). In practice, this
assumption can be done away with using today’s advanced SOA metadata management solutions (e.g., using
a dedicated tagging service).

Metadata has to be maintained throughout the life-cycle of the associated data, i.e., from the time of the
data’s creation until its deletion, and through all operations (such as read, write, and copy) performed on the
data in between. By default, the data inherits the same classification of the entity creating it. If the creating
entity wants to label the data in any other way, then it has to invoke special high-assurance services that we
explain later in Sections 4 and 5. Even though read operations do not change the metadata, those operations
may be logged, especially when extensive auditing is desirable. For write operations (modification of the
data or metadata), the classification of the data has to be replaced by the classification of the writer and
previous classification metadata has to be automatically invalidated (e.g., using digital signatures and cryp-
tographic hashes). Copy operations must copy both the data and the associated metadata. Similarly, delete
operations must delete both the data and metadata.

3.2 Security Policies

In this section, we sketch ways of developing a security policy model for a MLS service-oriented archi-
tecture. At a high level, the security policy model can be a a combination of mandatory access control
(MAC) and discretionary access control (DAC). MAC policies can be used to specify under what conditions
a service belonging to a given classification is allowed to handle incoming data belonging to the various
classifications and to generate outgoing data belonging to the various classifications. Thus, there will be
a set of policies, each of the form {s, f, d, c}, where s denotes the service classification, f ∈ {in, out}
denotes the data flow direction, d denotes the data classification level, and c is a set of conditions. Finer-
grained policies can be obtained by combining the above MAC policies with DAC policies specified at the
service instance2 level. For example, a service generating a data object may specify what other services
should be allowed access to that object. The main benefit of such DAC policies is increased security within
a classification level. They will usually be formalized using a role-based policy model [15] specifying the
required privilege levels for invoking certain service functions. If executing a service function results in
high-risk information flows, then only a high-privileged user may invoke that function.

On the logical infrastructure layer, two types of policies can be specified: storage policies and flow con-
trol policies. Storage policies define the minimum level of integrity required for a platform to be allowed
to store a given data class. An example policy may specify that confidential data can only be stored on a
medium integrity platform, which has sufficient protection due to security zones, firewall capabilities, and
tamper protection. Flow control policies specify the conditions to be satisfied before data can be transferred
from one platform to another platform. For example, a MAC policy may specify that any data transfer
from confidential platforms to unclassified platforms can take place only after down-classification or en-
cryption; a further refinement of the policy may, e.g., be obtained through another policy specifying more
conditions to be satisfied before data transfer from a Airforce Class 3 confidential platform to the Marine

2For a given service classification, there may be several service instances.

5



DCSGate UCSService

Figure 3: Components for Realizing a Multi-level Secure Broker Infrastructure

Corps Class 3 unclassified platform. For a given source platform p1 with classification level l1 and desti-
nation platform p2 with classification level l2, the combined MAC policy can be expressed formally as a
tuple {p1, l1, p2, l2, t, c}, where t denotes the required transformations and c denotes the constraints to be
satisfied.

3.2.1 Policy Conflicts

When combining multiple policies, there is potential for conflict. One way to resolve conflicts is by creating
a hierarchy of policies that govern service usage, in which the child nodes in the hierarchy inherit and refine
the policies specified for their parents’ nodes. The higher in the hierarchy, the coarser-grained the policies.
For example, policies specified at the service instance level may inherit and refine the polices specified at
the service classification level.

We now give an example of conflict resolution using precedence relationships similar to [3]. At each
level in the hierarchy, there are both MAC and DAC policies. Let us consider a particular service instance.
Suppose that, MAC1 and MAC2 denote the MAC policies specified at the service classification and service
instance level, respectively. Further, suppose that DAC1 and DAC2 denote the DAC policies specified at the
service classification and service instance level, respectively. Then, the overall policy for a given service
instance may be a free combination of the MAC1 and MAC2 policies and an ordered composition of the
DAC1 and DAC2 policies with the following precedence ordering used to resolve conflicts: (MAC1+MAC2)
> DAC2 > DAC1. MAC policies, by definition, are mandatorily enforced. Therefore, there must not be a
conflict among the corresponding MAC1 and MAC2 policies for a given service type; if there is one, then
there is no alternative but to resolve the conflict by making policy changes. For conflicting DAC policies for
a given service instance, the DAC2 (instance) policy is defined to get precedence over the DAC2 (service
classification) policy.

Table 1 shows how conflicting policies specified by two different entities can be resolved by establishing
well-defined priorities — in this example, by the rule that “the stronger denial policy takes precedence.”
Conflicting policies may occur, for example, if two coalition partners have conflicting requirements for the
same data classification.

4 Building Blocks for Realizing a Multi-level Secure Broker Infrastructure

We now introduce a set of components (Figure 3), which are architectural abstractions for realizing the MLS
service brokering infrastructure shown in Figure 2. In our architecture, two types of MLS services, namely,
gateways and data classification services, are used for flow control. While classification services reside on a
single level, gateways interconnect two levels.

4.1 Multi-level Gateways

A gateway service is a machine that connects two networks belonging to different classification levels.
Gateways need to provide high assurance since they are important for enforcing the flow policy between
these levels and blocking unauthorized SOAP messages. The unauthorized messages include confidentiality
breaching down-flows (i.e., information flow from a higher-confidentiality level to a lower-confidentiality

6



level) and up-flows (i.e., information flow from a lower-confidentiality level to a higher-confidentiality level)
that flood the higher-confidentiality level. For high-assurance, gateways must be simple. Hence, only very
simple checks are performed directly by the gateways. More complex operations are delegated to other
services, such as data classification services, encryption services, authentication services, and authentication
verification service. There are two kinds of gateways:

1. Up-Gateway: An up-gateway receives a message from an entity in a lower-classified network and
transfers the message to a higher-classified network. Before the transfer, the up-gateway attaches meta-
data indicating the lower-classification (both integrity and confidentiality labels) of the message and asks
a higher-classified authentication service to attach an authentication token, which authenticates both the
message and metadata. An example of a similar gateway is the information pump proposed in [9].

2. Down-Gateway: A down-gateway receives a message from an entity in a higher-classified network
and transfer the message to a lower-classified network if and only if the message had been previously down-
classified to have the same confidentiality classification3 as that of the lower-classified network. Prior to the
transfer, the gateway asks an authentication verification service to verify the authentication token attached
to the message. The gateway blocks all messages that do not have the proper classification or authentication.

4.2 Data Classification Services

Data classification services are high-assurance services that can alter the privileges associated with input data
items. The services achieve these alterations to the data by modifying the associated metadata, removing
any previously attached authentication token, and re-attaching a new token.

There are two types of data classification services:
1. Up-classification Services: An up-classification service decreases the privileges associated with an

input data item, by either increasing the confidentiality level or by decreasing the integrity level of the data
item. The service can also be used to tighten the access restrictions on the data, e.g., adding a condition
that certain data can only be read by a certain role. Like any other MLS service, an up-classification service
will have an associated default classification. The service can increase the confidentiality level of input
data up to its own and can decrease the integrity level of the data without limits. For example, consider
an up-classification service with default confidentiality classification confidential and integrity classification
medium. The service can accept data with confidentiality classification unclassified or confidential and
output data with confidentiality classification confidential. The service can also accept data of any integrity
classification and output data with integrity medium or low.

2. Down-classification Services: A down-classification service increases the privileges associated with
an input data item, by either decreasing the confidentiality level or by increasing the integrity level of the
data item. The service can decrease the confidentiality level of input data without limits and can increase
the integrity level of the data up to its own. For example, consider a down-classification service with default
confidentiality classification confidential and integrity classification medium. The service can change the
confidentiality classification of input data from confidential to unclassified. The service can also change the
integrity classification of data from low to medium.

Down-classification services are high-assurance services and a consequence of an important design deci-
sion to not allow arbitrary services (with perhaps unverified assurances) to increase the privileges associated
with data themselves. They are a step towards automated down-classification, which is essential for mini-
mizing error-prone interventions by human operators while preserving sufficient security. The criteria for
allowing such a down-classification need to be restrictive in order to preserve security. Down-classification
can only be triggered by services with sufficient assurance where service and its user are authorized for
down-classification. Moreover, it is essential to verify the data format to minimize the capacity of covert

3Note that the integrity classification of the message may be the same as that of the higher-classified entity.

7



channels [11][17]. Syntax analysis can often be done automatically in a service-independent way (e.g.,
using XML-Schema [2]). However, for semantic checking of complex messages, service-specific plug-ins
will be required to minimize covert channels. This automated down-classification can cover service mes-
sages with well-defined formats. If the messages include larger pieces of free-form data, a human may be
involved to check these portions in the context of the service. It is also important that the operations of the
down-classification service are properly logged and audited.

The usually restrictive criteria to be satisfied by a service invoking a down-classification service may
be relaxed if the data has been encrypted with a high-assurance encryption algorithm that cannot be broken
by lower-classified entities. This special case is useful for down-classification of documents with mixed
classification. Suppose that only parts of a confidential document need to be classified as confidential,
while others can be unclassified. Then, the document as a whole can be down-classified to unclassified if
the confidential parts of the document are either encrypted or removed. The down-classification service
attaches metadata indicating the confidentiality label to be unclassified and may invoke an authentication
service to add an authentication token, which authenticates both the data (including its encrypted portions)
and the new metadata. The down-classified and authenticated document may then be transmitted to services
with confidentiality classification unclassified through a down-gateway.

While designing policies and services for down-classification, it is important to have mechanisms in
place that prevent uncontrolled down-classification. For example, when secret information is down-classified
to confidential, it should not be possible for a compromised entity in the confidential domain to automat-
ically further down-classify the information to unclassified. Opting for direct down-classification instead
of “cascaded” down-classification may help avoid such uncontrolled down-classification. For example,
when secret information has to be down-classified to the unclassified level, it is better for a secret entity
to directly down-classify the information rather than doing a cascaded down-classification (i.e., secret to
confidential, and then to unclassified). In general, it is advisable to mandate at least one human-authorized
down-classification between two automated down-classifications.4

5 Implementing Multi-level Secure Services using a Multi-level Secure Bro-
ker

We now describe how the conceptual model presented in Section 3 can be realized in today’s defense
networks, which are structured into mutually isolated network zones, each with their own confidentiality
classification. Each service shown in Figure 2 would be deployed in the network zone of the corresponding
classification. The monolithic MLS service broker assumed in Figure 2 is decomposed in Figure 4 to include
the components described in Section 4 (viz., gateways and data classification services). The decomposed
service broker is distributed across all the network zones, and uses the components to connect between
zones of different classifications. As a result, the security-criticality of the rest of the service brokering in-
frastructure can be greatly reduced. Below, we describe a set of rules that can be used to achieve multi-level
secure interaction among the services shown in Figure 2. The core idea (shown in Figure 4) is to implement
inter-classification connections using the appropriate gateways and data classification services.

Communication between Services of the Same Classification: Communication between two services
belonging to the same classification (e.g., the two unclassified services in Figure 4) is brokered just like any
regular non-MLS service.

Communication from a Higher-Classified Service to a Lower-Classified Service: Suppose H denotes
the classification of the higher-classified service A and L denotes the classification of the lower-classified

4Note that this mechanism only protects against subsequent automated down-classification by accident. If a service on a inter-
mediate level is allowed to generate messages to be down-classified, existing data may be leaked into these messages.

8



Service Service Service

D
C

S

G
at

e

G
at

e

Service

Service Brokering Infrastructure

U
C

S

U
C

S

Figure 4: Decomposition of MLS Services

service B. For example, Figure 2 shows a down-flow from a confidential service to an unclassified service.
In this case (as shown in Figure 4), the output port of A meant for the down-flow messages is classified at L.
The down-flow first goes through a down-classification service (which down-classifies the messages from
H to L) and then through a down-gateway. The output from the down-classification service is connected
to the input of the down-gateway5 and the output of the down-gateway is connected to the input port of the
service B.

Communication from a Lower-Classified Service to a Higher-level Service: As before, suppose that H
denotes the classification of the higher-classified service A and L denotes the classification of the lower-
classified service B. For example, Figure 2 shows an up-flow from a confidential service to a secret service.
In this case (as shown in Figure 4), the output port of B meant for the up-flow messages is classified at H .
The up-flow first goes through an up-classification service (which up-classifies the messages from L to H)
and then through an up-gateway. The output from the up-classification service is connected to the input of
the up-gateway and the output of the up-gateway is connected to the input port of the service A.

6 Discussion

In this section, we discuss some important special cases and challenges.

6.1 Transporting Lower-Classified Data Through a Higher-Classified Network Zone

Data with a lower-confidentiality classification L can be transported through a network zone with a higher-
confidentiality classification H to an entity in the network zone with lower-confidentiality classification L
using message authentication codes (MACs). For example, confidential data can be transported (say, for
routing efficiency reasons) from an entity in one confidential network through a secret network to another
entity in another confidential network. The data goes through an up-gateway when it crosses over from
the lower-confidentiality network to the higher-confidentiality network. As explained in Section 4.1, the
up-gateway invokes an authentication service, which attaches an authentication token. On the way from the
higher-confidentiality network to the lower-confidentiality network, the data goes through a down-gateway,
which invokes an authentication verification service to detect any modification in the data or metadata while
in transit through the higher-confidential network. If the authentication token is verified correctly, the down-
gateway allows the data to re-enter the lower-confidentiality network. Note that, the data does not have

5In Figure 4, the “Gate” boxes contain both an up-gateway and a down-gateway. For example, the gray-colored “Gate” box
contains an up-gateway controlling flows from the unclassified to the confidential network zone and a down-gateway controlling
flows from the confidential to the unclassified zone. The “UCS” box represents an up-classification service and the “DCS” box
represents a down-classification service.

9



through an up-classification service or a down-classification service, since its classification remains the
same (lower-confidentiality) throughout.

6.2 Tunneling Higher-Classified Data Through a Lower-Classified Network Zone

Data with a higher-confidentiality classification H can be “tunnelled” through a network zone with a lower-
confidentiality classification L to an entity in the network zone with higer-confidentiality classification H
using encryption. For example, secret data can be transported (say, for routing efficiency reasons) from
an entity in one secret network through a confidential network to another entity in another secret net-
work. The data goes through a down-gateway, which invokes an encryption service, when it crosses over
from the higher-confidentiality network to the lower-confidentiality network. On the way from the lower-
confidentiality network to the higher-confidentiality network, the data goes through a up-gateway, which
invokes a decryption service. The encryption service ensures that the data and associated metadata can be
decrypted only by the particular decryption service to be invoked by the up-gateway. Security policies may
specify additional tunneling security requirements to be satisfied, such as introduction of dummy data to
thwart traffic analysis attacks. The classification of the data remains the same (higher-confidentiality H)
throughout the tunneling procedure.

6.3 Data Fusion – Combination and Partitioning

Multiple pieces of lower-classified data can be combined to create higher-classified data. The process that
does the combination must itself be higher-classified and will be receiving the individual pieces of data from
lower-classified entities (through up-gateways). For example, maps gathered from individual battlefields
may be confidential data, but the combined information from multiple maps that gives the overall picture
(and perhaps the overall strategy) may be secret.

It is very hard to determine whether an assembly of confidential information pieces into secret informa-
tion has been done illegally on the confidential layer (unless the combining entity signs the combined data
and the data classification of the entity is known). The only way to counter such information fusion attacks
is by means of stringent access control (no access to information that is not needed) as well as intrusion
detection to detect behaviors corresponding to such illegal information fusion.

Higher-classified data generated or stored at a higher-classified process may be partitioned into multiple
pieces, each with a lower classification. As an inverse of the above example, a process with confidentiality
classification secret may contain a secret map that gives the overall battle strategy. The process may then
automatically partition the map into confidential sub-maps (through a down-classification service), one for
each battlefield, and then convey the sub-maps through down-gateways to the respective battlefield lieu-
tenants.

6.4 Time-Sensitive Labeling

An example of time-sensitive labeling is data that is higher-classified (e.g., secret) for a particular duration.
Time-sensitive labeling may be achieved by having the data’s default classification level correspond to the
higher-classification (i.e., secret, in our example), and then automatically down-classifying the data once
the duration has expired. Such a scheme is useful, for example, in creating some types of mission-critical
data whose classification may be high during the course of the mission and then lowered once the mission
is over.

Time-sensitive labeling may be viewed as a form of up-classification or down-classification, and hence,
should undergo the same procedure as regular up-classification and down-classification respectively. Specif-
ically, since any entity can up-classify, a lower-classified entity (say, a confidential service) can create

10



time-sensitive higher-classified data (secret for 3 minutes) on its own. On the other hand, since down-
classification is more controlled, a higher-classified entity (say, a secret service) must go through a down-
classification service to generate time-sensitive data of the same or lower-classification (secret for 3 min-
utes). Note that a secret entity creating data that is labeled “secret for 3 minutes” is actually a form of
down-classification and needs similar authorization.

6.5 Legacy Services

There are several challenges in metadata management. Attaching metadata to services is now feasible in
service-oriented architectures. However, metadata-enablement of legacy applications that implement newly
designed service interfaces is still a challenge, particularly, if the data flow inside the legacy applications is
not easy to determine. Another challenge that has not been discussed in detail here is the standardization of
metadata exchange formats for allowing different forces to exchange data and metadata.

Metadata attachment depends on the granularity with which services handle security classification. If a
service does not use metadata (e.g., a legacy single-level service), then the metadata can be simply tunneled
(using encryption) through the service. If the service has separate ports for input and output channels, each
handling only a single classification level, then the ports themselves are classified at the same level as the
data they handle and there is no need for metadata attachment by the service (as metadata attachment can
be done at the ports). On the other hand, if a port outputs data belonging to different classification levels
on a per-instance basis, then metadata indicating the data classification level needs to be part of the services
output format.

In services that are not label-aware (i.e., do not provide labels for output data), an important challenge
is to identify the metadata to be attached at the service ports. Following are two options to address that
challenge: (1) attach the highest confidentiality level of any input data to all outputs, or (2) tunnel metadata.

7 Conclusion

In this paper, we have defined a conceptual model for multi-level security in a service-oriented architecture
and described how this model can be realized in today’s defense networks structured into mutually isolated
network zones, each with their own confidentiality classification. We discussed the MLS-enablement of the
service layer through metadata management and specification of security policies. We have introduced MLS
architectural abstractions, such as gateways and data classification services, which can help realize a MLS
service brokering infrastructure. These abstractions, when implemented with high-assurance, can improve
flexibility, enhance information flow control, and reduce the security-criticality of the rest of the service
brokering infrastructure.

While this is a first step towards MLS-enabling business processes (at the top-most layer of the stack
model shown in Figure 1), the high complexity of business processes and the lack of technologies to provide
reliable MLS isolation at that layer leads us to believe that substantial research is required before that goal
can be realized.

References

[1] SOAP Specifications. http://www.w3.org/TR/soap.

[2] XML Schema. http://www.w3.org/XML/Schema.

11



[3] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit for managing enterprise privacy policies. In
Proceedings of the Eight European Symposium on Research in Computer Security (ESORICS), volume
2808 of Lecture Notes on Computer Science (LNCS), pages 162–180. Springer-Verlag, Berlin, Oct.
2003.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 164–177, October 2003.

[5] D. Bell and L. La Padula. Secure computer systems: Unified exposition and multics interpretation.
Technical Report MTR-2997, MITRE Corp., Bedford, MA, July 1976.

[6] D. E. Bell. Looking Back at the Bell-La Padula Model. In ACSAC, pages 337–351. IEEE Computer
Society, 2005.

[7] K. Biba. Integrity considerations for secure computer systems. Technical Report TR-3153, Mitre,
Bedford, MA, Apr. 1977.

[8] K. Birman, R. Hillman, and S. Pleisch. Building Network-Centric Military Applications over Service
Oriented Architectures. In Proc. of the SPIE Conference on Defense Transformation and Network-
Centric Systems, Orlando, FL, USA, March 2005.

[9] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network pump. IEEE Transactions on Software
Engineering, 22(5):329–338, 1996.

[10] P. A. Karger. Multi-level security requirements for hypervisors. In 21st Annual Computer Security
Applications Conference, pages 267–275. IEEE Computer Society, 2005.

[11] I. Moskowitz and M. H. Kang. Covert channels — here to stay? In COMPASS ’94, pages 235–243,
Gaitersburg MD, June 1994. IEEE Press.

[12] H. Mouratidis and P. Giorgini. Analysing Security in Information Systems. In Proceedings of The
Second International Workshop on Security In Information Systems (WOSIS-2004), Porto, Portugal,
April 2004.

[13] OpenTC Consortium. The OpenTC consortium home page. http://www.opentc.net.

[14] R. Sailer, T. Jaeger, E. Valdez, R. Perez, S. Berger, J. L. Griffin, and L. van Doorn. Building a MAC-
based security architecture for the Xen open-source hypervisor. Research Report RC23629, IBM
Research Division, June 2005.

[15] R. Sandhu. Role-based access control. In M. Zerkowitz, editor, Advances in Computers, volume 48.
Academic Press, 1998.

[16] R. Smith. Multilevel Security. In H. Bidgoli, editor, Handbook of Information Security: Threats,
Vulnerabilities, Prevention, Detection and Management, volume 3, chapter 205. John Wiley, 2005.

[17] B. Venkatraman and R. Newman-Wolfe. Capacity estimation and auditability of network covert chan-
nels. In 1995 IEEE Symposium on Security and Privacy, page 186, 1995.

12


