A Toolkit for Managing Enterprise Privacy Policies

Michael Backes, Birgit Pfitzmann, and Matthias Schunter

IBM Zurich Research Laboratory, Ruschlikon, Switzerland
{nbc, bpf, nts}@urich.i bmcom

Abstract. Enterprise privacy enforcement allows enterprises toriatéy en-
force a privacy policy that the enterprise has decided toptpme. An enterprise
privacy policy often reflects different legal regulatiopspmises made to cus-
tomers, as well as more restrictive internal practices efdahterprise. Further,
it may allow customer preferences. Hence it may be authenadhtained, and
audited in a distributed fashion.

Our goal is to provide the tools for such management of erigerprivacy poli-
cies. The syntax and semantics is a superset of the Enterigacy Autho-
rization Language (EPAL) recently proposed by IBM. The bakfinition is
refinement, i.e., the question whether fulfilling one poléaytomatically fulfills
another one. This underlies auditing of a policy againstldroonew regulation
or promise and transferring data into a realm with a diffeggolicy. It is also
the semantic basis for composition operators. We furthénelesuch composi-
tion operators for different purposes. Our main focus itdmbine usability for
enterprises, e.g., by treating multiple terminologiespmplete data, and differ-
ent types of errors and defaults, with the formal rigor neetbemake privacy
compliance meaningful and predictable.

1 Introduction

An increasing number of enterprises make privacy promisesstomers or, at least in
the US and Canada, fall under new privacy regulations. Tarensdherence to these
promises and regulations, enterprise privacy technodogrie emerging [8]. An impor-
tant tool for enterprise privacy enforcement is formalizederprise privacy policies
[10,17,16]. Compared with the well-known language P3P [h88nded for privacy
promises to customers, languages for the internal privaagtices of enterprises and
for technical privacy enforcement must offer more postied for fine-grained distinc-
tion of data users, purposes, etc., as well as a clearer siesian

Although the primary purpose of enterprise privacy pokd enterprise-internal
use, many factors speak for standardization of such psli€iest, it would allow cer-
tain technical parts of regulations to be encoded into swsthradardized language once
and for all. Secondly, a large enterprise with heterogesespositories of personal data
could then hope that enforcement tools for all these repasgt become available that
allow the enterprise to consistently enforce at least theriiral privacy practices cho-
sen by the CPO (chief privacy officer). Thirdly, with increagy dynamic e-business,
data will be exchanged between enterprises, and entelisedaries change due to
mergers, acquisitions, or virtual enterprises. Then tlodysipolicy paradigm stressed
in papers like [17] must be enforced. It states that the palicler which data have been

102 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

collected has to govern the use of these data at all times.al®d requires compati-
ble enterprise privacy enforcement mechanisms. For thressons, IBM has recently
proposed an Enterprise Privacy Authorization Languag@(kP1] as an XML speci-
fication for public comments and possible subsequent impstisndardization.

An enterprise privacy policy often reflects different legagulations, promises
made to customers, as well as more restrictive internaltipesc of the enterprise.
Further, it may allow customer preferences. Hence it may uibosed, maintained,
replaced, and audited in a distributed fashion. In otherdaioone will need a life-
cycle management system for the collection of enterpris@agy policies. While such
thoughts occur as motivation in most prior work on entegppisvacy policies, no actual
definitions and algorithms needed for these managemeisthaok been proposed.

The overall goal of this article is therefore to provide a poehensive range of tools
for designing and managing privacy policies in an enteepiige do this concretely for
the IBM EPAL proposal. However, for a scientific paper we aatrunse the lengthy
XML syntax, but have to use a corresponding abstract syntasemted in [2] (which,
like EPAL, is based on [17]). Our paper reflects recent updatede between the earlier
abstract [2] and the published specification and XML Schelfasp that it is currently
as close as possible to EPAL. Further, we do not abstract fmmditions in contrast
to [2] so that we can define a semantics for incomplete contate, which is useful
both in general practice and specifically for refinements @mposition of policies
from different realms. In spite of the current closenessRAIE we continue to call the
abstract language E-P3P as in [2] to avoid confusion witlsipés changes to EPAL.

The first tool we define is policy refinement. Intuitively, op@licy refines another
if using the first policy automatically also fulfills the sembpolicy. It is thus the fun-
damental notion for many situations in policy managemeat.iRstance, it enables
verification that an enterprise policy fulfills regulatiomsadheres to standards set by
consumer organizations or a self-regulatory body, assgiority that these coarser re-
quirements are once and for all also formalized as a privatigyp Similarly, it enables
verification that a detailed policy for a part of the entespr{defined by responsibility
or by technology) refines the overall privacy policy set bg tompany’s CPO. The
verification can be done in the enterprise or by externaltatgjisuch as [21].

When a policy is first designed, refinement may be achievedonatructive way,
e.g., by starting with the coarse policy and only adding itkekyy certain provably re-
fining syntactic means. However, if a regulation change$erenterprise extends its
operation to new sectors or countries, the enterprise haify that its existing policy
still complies with the new or additional regulations. Herecdefinition of refinement
between two arbitrary policies is needed. Sticky policiesamother application of gen-
eral refinement: Here data are transferred from the realmmefpwlicy into another
(where the transfer must of course be permitted by the firty)pand the second
realm must enforce the first policy. However, the enforcemeschanisms (both orga-
nizational and technical) in the second realm will oftenlm®able to deal with arbitrary
policies for each obtained set of data. In this case, onerealst perform a refinement
test before the data are transferred, i.e., one has to \hefythe policy of the second
realm refines the policy of the first, at least for the resticof the first policy to the
data types being transferred.

A Toolkit for Managing Enterprise Privacy Policies 103

Composition is the notion of constructively combining tworoore policies; typ-
ically the goal is that the resulting policy refines them Bbr instance, an enterprise
might first take all applicable regulations and combine theta a minimum policy.
A general promise made to customers, e.g., an existing R8Blated into the more
general language, may be a further input. In enterprise plaat support detailed pref-
erences of individuals, such preferences may be yet anptitiey to be composed with
the others, yielding one final policy per individual. (In ¢@st, simple preferences may
be represented as a set of Boolean opt-in or opt-out ch@oedreated as context data
by conditions within a single policy.) Typical applicat®mwhere detailed preferences
are needed are wallet-style collections of user data fopthipose of transfer to other
enterprises, and collaborative tools such as team-rooms.

Composition is not a simple logical AND for powerful entager privacy policies
as in EPAL, e.g., because of the treatment of obligatiorifgrént policy scopes, and
default values. Moreover, refinement and composition tpriwo basic questions about
the meaning of a privacy policy, which are not answered byatisract semantics of
an individual policy. The first question is the meaning of &ipwe ruling in privacy
policies. Intuitively, negative rulings are understooth&odefinite; e.g., if a policy states
that certain data are not used for email marketing, then alo smail marketing should
happen. The intuition is different for most positive rulindf a policy allows third-party
email marketing, it is typically not seen as a promise to albfudo marketing, neither
to the owners of the email addresses nor to the third paHi@sever, if one decides to
representaccess rights for data subjects to their datapsitbe right to see all their data
or to correct mistakes, with the normal policy mechanisimsntthese positive rulings
must be mandatory. The second question is related: If agyripalicy, like EPAL,
is formulated with precedences to enable easy formulatidrnositive and negative
exceptions, then within a policy, neither negative nor pasirules are “final”, i.e.,
can be considered isolated from the policy. In contrastpmpositions, one may want
to retain an entire original policy as final. We solve bothsth@roblems by allowing
mandatory sub-policies. This allows us to distinguish faeadisions from decisions that
may be overturned by other rules, and thus to representaatldkes just discussed. We
extend the notion of composition and refinement to thesegarbpolicies.

Further related literature.The core contribution of new privacy-policy languages [10,
17,16], compared with other access-control language$ieisibtion of purpose and
purpose-bound collection of data, which is essential tegasi legislation. Other nec-
essary features that prevent enterprises from simply ubiigexisting access-control
systems are obligations and conditions on context infdonatndividually, these fea-
tures were also considered in recent literature on accegsotoe.g., purpose hierar-
chies in [5], obligations in [4, 14, 20], and conditions omtaxt information in [22].
However, we need them all in one language, and even for theidicl features the
detailed semantics needed in practice, such as with mailtgyminologies, typically
does not exist yet, and thus nor does a comparable toollityRmmposition has been
treated before, in particular for access control [6, 7, 915322], systems management
[18], or IPSEC [11]; however none of these papers does itHergeneral policies we
need and several do not have a clear underlying semantiegptilications closest to

104 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

our treatment of incomplete data are those on informatisolasure-minimal negotia-
tion of access-control policies, e.g., [3, 12].

2 Syntax and Semantics of E-P3P Enterprise Privacy Policies

Privacy policies define the purposes for which collectec dain be used, model the
consent a data subject can give, and may impose obligatittogtoe enterprise. They
can formalize privacy statements like “we use data of a miaomarketing purposes
only if the parent has given consent” or “medical data caly belread by the patient’s
primary care physician”. In this section, we present thaérabssyntax and semantics
E-P3P of IBM’'s EPAL privacy policy language [1]. Comparedwf2], we abstract less
from conditions and obligations, so that we can present &metailed semantics.

2.1 Hierarchies, Obligations, and Conditions

We start by defining the models of hierarchies, obligatiams] conditions used in E-
P3P, and operations on them as needed in later refinement®anpibsitions.

For conveniently specifying rules, the data, users, eicategorized in E-P3P as
in many access-control languages. This also applies toutmopes. In order to allow
structured rules with exceptions, categories are orderéierarchies; mathematically
they are forests, i.e., multiple trees. For instance a usempany” may group sev-
eral “departments”, each containing several “employeBsé. enterprise can then write
rules for the whole “company” with exceptions for some “depeents”.

Definition 1 (Hierarchy). A hierarchyis pair (H, >) of a finite setd and a transi-
tive, non-reflexive relation y C H x H, where every, € H has at most one immediate
predecessor (parent). As usual we writg; for the reflexive closure.

For two hierarchieg H, >) and (G, >¢), we define

(H,>H)
(H,>H)

C(G,>¢):= (HCG) A (> C>q);

U (G, >G) = (H UG, (>H @] >G)*);

where* denotes the transitive closure. Note that a hierarchy ungnot always a
hierarchy again. <&

E-P3P policies can impose obligations, i.e., duties forahrprise. Examples are to
send a notification to the data subject after each emergenesa to medical data, or
to delete data after a given time. Obligations are not atreckin hierarchies, but by an
implication relation. For instance, an obligation to deldata within 30 days implies
that the data are deleted within 60 days. The overall olitigatfor a rule in E-P3P are
written as sets of individual obligations, which must hamerderpretation in the appli-
cation domain. As multiple obligations may imply more thaclke one individually, we
define the implication (which must also be realized in thdiapfion domain) on these
sets. We also define how this relation interacts with vocaiygxtensions.

A Toolkit for Managing Enterprise Privacy Policies 105

Definition 2 (Obligation Model). An obligation modeis a pair (O, —¢) of a setO
and a relation—o C PB(0) x B(0), spokenmplies on the powerset af), where
01 —o 09 forall 6 C o1, i.e., fulfilling a set of obligations implies fulfilling adub-
sets.

For O’ O PB(0), we extend the implication t0’ x B(0) by ((6; —o 02) &
(61 n sI;(O) —0 52)). &

The decision formalized by a privacy policy can depend ortedrdata. Examples are
a person’s age or opt-in consent. In EPAL this is represdmjeabnditions over data in
so-called containers [1]. The XML representation of therfolas is taken from [22],
which corresponds to a predicate logic without quantifigrghe abstract syntax in [2],
conditions are abstracted into propositional logic, bigtithtoo coarse for our purposes.
Hence we extend E-P3P to be closer to EPAL by formalizing treainers as a set of
variables with domains, and the conditions as formulas these variables.

Definition 3 (Condition Vocabulary). A condition vocabularyis a pair Var =
(V, Scope) of a finite seft” and a function assigning everye V, called avariable a
setScope(x), called itsscope
Two condition vocabularie¥ar, = (V1, Scope,), Vare = (Va, Scope,) are com-
patibleif Scope, (r) = Scopey(x) for all x € Vi N V,. For that case, we define their
unionby Var,; U Varg := (V1 U Va, Scope, U Scope,).
<&

In the future, one might extend this to a full signature ingbese of logic, i.e., including
predicate and function symbols. In EPAL, this is hidden iartdefined functions that
may occur in the XACML conditions. For the moment, we assurgi&en universe of
predicates and functions with fixed domains and semantics.

Definition 4 (Condition Language).Let a condition vocabularyar = (V, Scope)
be given.

— Thecondition languag€’(Var) is the set of correctly typed formulas oviérus-
ing the assumed universe of predicates and functions, atitkigiven syntax of
predicate logic without quantifiers.

— The free variables of a formulae C(Var) are denoted byree(c). Here these are
all variables ofec.

— A (partial) assignmentof the variables is a (partial) functiony: V' —
Uy Scope(x) with x(z) € Scope(x) for all z € V. The set of all assignments
for the setVar is written2ss(Var); that of all partial assignment@(ssc (Var).

— For x € Ass(Var), let eval, : C(Var) — {true, false} denote the evaluation
function for conditions given this variable assignmentisTik defined by the un-
derlying logic and the assumption that all predicate andction symbols come
with a fixed semantics.

<&

An important aspect of our semantics is the ability to deaamiegfully with under-
specified requests. This means that a condition might novhleiaable since only a

106 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

subset of the variables used in the conditions has beemaskighis is important not
only in federated scenarios as introduced in [9], but als@mf@rall in-enterprise poli-
cies. For instance, some rules of a policy may need the agp@fsan or its employee
role, while for many people no age or employee role is knowth@énenterprise. This
typically does no harm because other rules apply to thes®perFor such situations,
we will need to know whether a condition can still becotnee or false, respectively,
when a partial assignment is extended. Hence we define ésns

Definition 5 (Extension of partial assignments)Let a condition vocabularyar =
(V, Scope) be given. Ify € Ussc(Var) is defined oV C V, let

Ext(x, Var) == {x* € Uss(Var) |Vu € U: x*(u) = x(u)}

denote the set aéxtension®f . O

2.2 Syntax of E-P3P Policies

An E-P3P policy is a triple of a vocabulary, a set of authditwarules, and a default rul-
ing. The vocabulary defines element hierarchies for dataqaes, users, and actions,
as well as the obligation model and the condition vocabuRata, users and actions
are as in most access-control policies (except that usertypically called “subjects”
there, which in privacy would lead to confusion with datajeats), and purposes are
an important additional hierarchy for the purpose bindihgallected data.

Definition 6 (Vocabulary). A vocabularyis a tuple Voc = (UH,DH,PH,AH,
Var, OM) where UH, DH, PH, and AH are hierarchies called user, data, purpose,
and action hierarchy, respectively, and is a condition vocabulary an@M an obli-
gation model. &

As a naming convention, we assume that the components obdulary calledoc are
always called as in Definition 6 WitbH = (U, >y), DH = (D,>p), PH = (P,>p

), AH = (A,>4), Var = (V, Scope), and OM = (O, —0), except if explicitly
stated otherwise. In a vocabulary callé@c; all components also get a subscript
and similarly for superscripts. A rule set contains autretion rules that allow or deny
operations. A rule basically consists of one element froohe@cabulary component.
Additionally, it starts with an integer precedence, andsanih a ruling.

Definition 7 (Ruleset and Privacy Policy).A ruleseffor a vocabularyVoc is a subset
of Zx U x D x Px AxC(Var) x B(O) x {+,0,—}.

A privacy policyor E-P3P policyis a triple (Voc, R, dr) of a vocabularyVoc, a
rule-setR for Voc, and adefault rulingdr € {+,0,—}. The set of these policies is
called EP3P, and the subset for a given vocabuldy3P (Voc). &

In EPAL, precedences are only given implicitly by the textuaer of the rules. Hence
our explicit precedences, and the fact that several rule$ase the same precedence,
make E-P3P a superset of EPAL. The rulirg®, and— mean ‘allow’, ‘don’t care’, and
‘deny’. The rulingo was not yet present in [2]. In EPAL, it is called ‘obligate’daaise

A Toolkit for Managing Enterprise Privacy Policies 107

it enables rules that do not make a decision, but only impddéianal obligations. An
example is a global rule “Whenever someone tries to accetatay | want to receive
a notification”.

As a naming convention, we assume that the components ofacpmolicy called
Pol are always called as in Definition 7, andAbl has a sub- or superscript, then so do
the components.

2.3 Semantics of E-P3P Policies

An E-P3P requestis atuple, d, p, a) which should belong to the sBtx D x Px A for
the given vocabulary. Note that E-P3P and EPAL requestsaineestricted to “ground
terms” as in some other languages, i.e., minimal elemetiteihierarchies. This is use-
ful if one starts with coarse policies and refines them bezalesments that are initially
minimal may later get children. For instance, the individugers in a “department” of
an “enterprise” may not be mentioned in the CPO’s privacicgobut in the department
privacy policy. For similar reasons, we also define the sditsmfor requests outside the
given vocabulary. We assume a supetsét which all hierarchy sets are embedded; in
practice it is typically a set of strings or valid XML exprésss.

Definition 8 (Request).For a vocabularyVoc, we define the set ofalid requestas
Req(Voc) := UxDx PxA. Given a superse§ of the setd/, D, P, A of all considered
vocabularies, the set all requestss Req := S*. O

The semantics of a privacy policiol is a functioneval p,; that processes a request
based on a given, possibly partial, assignment.

The evaluation resultis a pdir, 6) of a ruling (decision) and associated obligations.
Our semantics extends that of [2] in three ways. First, weehawdeal with the new
partial assignments in the conditions of rules. Secontlly,rulingo that was added
to the rule syntax gets a semantics; as explained above seid 10 make obligations
without enforcing a decision. Thirdly, the rulingmay not only bet, o, or — as in a
rule, but alsascope_error or conflict_error. This denotes that the request was out of
scope of the policy or that there was a conflict among appkcaltes. The reason for
distinguishing these errors is that out-of-scope errandeeeliminated by enlarging the
policy, in contrast to conflict errors. This will become inttant for policy composition.

The semantics is defined by a virtual pre-processing thatidsithe hierarchies and
a request processing stage. Note that this is only a compénitibn of the semantics
and not an efficient real evaluation algorithm.

Definition 9 (Unfolded Rules).For a privacy policyPol = (Voc, R, dr), theunfolded
rule setUR(Pol) is defined as follows:
URdown(Pol) := {(i,«',d’,p’,d',c,0,7) | I(i,u,d,p,a,c,0,7) € R
withu > v’ Ad>p d Ap>pp ANa>ad'};
UR(Pol) := URdown(Pol)
u {@,,d,p',d c,0,-)]| I, u,d,p,a,c0,—) € URdown(Pol)
withu' >y uANd >pdAp >ppAad >4 al.
&

108 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

Note that ‘deny’-rules are inherited both downwards and anols along the four hier-
archies while ‘allow’-rules are inherited only downward$e reason is that the hier-
archies are considered groupings; if access is forbidden lement of a group, it is
also forbidden for the group as a whole.

Next we define which rules are applicable for a request giyear@al assignment of
the condition variables. These (unfolded) rules have tlee dsita, purpose, and action
as in the request. Positive rules are only defined to be aigéiéf they evaluate térue
for all extensions of the partial assignmentNegative and don’t-care rules are defined
to be applicable whenever the conditions could still bectmne For instance, if a rule
forbids access to certain data for minors, a child shouldeaible to obtain access by
omitting its age, and obligations from don’t-care rulesdbildren should apply.

Definition 10 (Applicable Rules).Let a privacy policyPol = (Voc, R, dr), a request
q = (u,d,p,a) € Req(Voc), and a partial assignment € 2ssc (Var) be given. Then
the set ofapplicable ruless

AR(Pol,q,x) :=
{(i,u,d,p,a,c,6,+) € UR(Pol) | Vx™ € Ext(x, Var): evaly~(c) = true}
U {(¢,u,d,p,a,c,0,17) € UR(Pol) | r € {—,0} A
Ax* € Ext(x, Var): evaly-(c) = true}.
&

For formulating the semantics, we need the maximum and nuimirprecedence in a
policy.

Definition 11 (Precedence Range)ror a privacy policy Pol = (Voc, R, dr), let
max(Pol) := max{i | 3(i,u,d,p,a,c,0,r) € R}, and similarlymin(Pol). <&

We can now define the actual semantics, i.e., the result afeest given a partial as-
signment. Recall that rules with rulirgare provided to allow obligations to accumulate
before the final decision; this is done in a &8gt..

Definition 12 (Semantics).Let a privacy policyPol = (Voc, R, dr), a requesty =
(u,d,p,a) € Req, and a partial assignment € Assc (Var) be given. Then thevalu-
ation result(r, 0) := eval p,i(q, x) of policy Pol for ¢ andx is defined by the following
algorithm, starting witho,,.. := (). Every “return” aborts the algorithm.
— Out-of-scope testindf ¢ ¢ Req(Voc), return(r, 0) := (scope_error, ().
— Processing by precedendeor each precedence levél := maz(Pol) down to
min(Pol):
e Accumulate obligationsFor each applicable rule(i,u,d,p,a,c,d',r) €
AR(Pol,q,), Setgcc 1= Oacc U 0.
e Conflict detection. If two conflicting rules (i,u,d,p,a,c1,01,+) and
(i,u,d, p,a,cq, 02, —) existinAR(Pol, q, x), return (conflict_error, 0).
e Normal ruling.If at least one rulg(i, u, d, p,a,c,d',r) € AR(Pol,q, x) with
r # o exists, returnr, ogcc).
— Default ruling.If this step is reached, returr, o) := (dr, dacc)-

We also say that policyol rules(r, o) for ¢ andy, omittingq and x if they are clear
from the context. <&

A Toolkit for Managing Enterprise Privacy Policies 109

3 Refinement of Privacy Policies

In this section, we define the notion of refinement for E-P3Ijgs. As explained in
the introduction, refinement is the foundation of almosbalrations on policies. We
further define policy equivalence and show that it equalsuadutfinement.

Refining a policyPol; means adding more details, both rules and vocabulary, while
retaining its meaning with respect to the original vocabul®ur notion of refinement
allows policy Pol, to define a ruling ifPol; does not care. Additionally, it is allowed to
extend the scope of the original policy and to define arhjtrales for the new elements.

In all other cases, the rulings of both policies must be idahtThis also comprises
the ruling conflict _error. For new elements however, we have to capture that if they
are appended to the existing hierarchies, there could apislicable rules for these
elements if they were already present, and newly added falékese elements could
influence existing elements as well. As an example, a rula fdepartment” may forbid
its “employees” to access certain data for marketing piepasow if a new employee
is added, this rule should as well be applicable; furtheemdefining a new rule for
this case with higher precedence, e.g., granting the newose an exception to the
department’s rule should obviously not yield a refinementraore. In our definition
of refinement, we therefore do not evaluate each policy oavits vocabulary but on
the joint vocabulary of both policies. Since joining two abalaries, i.e., joining their
respective hierarchies, might not yield another vocaluiae introduce the notion of
compatible vocabularies.

Definition 13 (Compatible Vocabulary). Two vocabularieS/oc; and Voc, are com-
patibleif their condition vocabularies are compatible and all Faechy unionsUH; U
UH,, DH1UDH,, PH,U PHy,andAH, U AH are hierarchies again.
We define theinion of two compatible vocabularies &goc; U Vocy := (UH; U
UHy;, DH, U DH5, PH, U PHy, AH, U AH5, Vary U Vary, OM{ U OMQ)
<&

Dealing with the respective obligations is somewhat moffecdit. Intuitively, one
wants to express that a finer policy may also contain refinédations. However, since
a refined policy might contain additional obligations, wéess some others have been
omitted, it is not possible to simply compare these oblaatiin the obligation model
of the original policy. (Recall that we also use refinementampare arbitrary poli-
cies; hence one cannot simply expect that all vocabulang péthe refined policy are
supersets of those of the coarser policy.)

As an example, let the obligation model of the coarser patimytain obligations
o ="delete in aweek” and; =“delete in a month” with the implication —o, o1. The
refined policy contains, = “delete immediately” and as above witlv, —o, 0. Now
0o should be a refinement of;, but this cannot be deduced in either of the obligation
models. Hence both obligation models have to be used, he has, —o, 0 —0o, 01.
We define this asbligation refinementn order to obtain a meaningful refinement from
the point of view ofPol1, the relation— o, has to be certified by a party trusted by the
maintainer ofPol; .

Definition 14 (Obligation Refinement). Let two obligation model$O;, —o,) and
0; C O; for i = 1,2 be given. Them, is a refinementof 6,, written 6o < o1, iff

110 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

the following holds:
F30 C 01 NO2: 62 —0, 0 —0, 01.

We are now ready to introduce our notion of policy refinement.

Definition 15 (Policy Refinement).Let two privacy policiesPol; = (Voc;, R;, dr;)
for i = 1,2 with compatible vocabularies be given, and et = (Voc, R;, dr;)
fori = 1,2, WhereVoc;‘ = (UH1 U UHy,DH, U DH5, PH, U PHQ,AHl U AHQ,
Var;, OM;). ThenPol, is arefinementof Pol;, written Pols < Poly, iff for every
assignmeny € 2ssc(Vary U Vary) and every authorization requegte Reg one of
the following statements holds, whére, 0;) := eval p,ix (¢, x) fori := 1, 2:

— (r1,01) = (re,02) = (conflict_error, ().
— (r1,01) = (scope-error,).

-7 € {+, 7} andr, = 1 andos < 01.
—ry =oandry € {—l—, o, —} andos < 0.

<

Besides this rather strict notion of refinement, we can aksfind a notion ofweak
refinementdenoted by<, where the refining policy may be less permissive than the
original policy. The only difference to Definition 15 is thatis treated likeo in the
fourth statement instead of like in the third statement. Weak refinement corresponds
to the intuition that a policyPol; implements a privacy promise or requirement to use
data at most for certain purposes, so that a refining pdbiels can only restrict that
usage. However, while weak definition prevents misuse @sdwt preserve guaranteed
access rights: For instancByl; may guarantee an individual the right to read her data
while policy Pols does not. Strong refinement therefore seems the more usgfahn
for E-P3P with its 3-valued logic where meaning ‘don’t-care’, is also a valid ruling.
In contrast one might choose weak refinement for a 2-valuédydanguage with only
the rulings+ and—. We therefore concentrate on strong refinement.

After refinement, we now introduce a notion of equivalencedifcies. Similar to
policy refinement, we start with the equivalence of obligasi.

Definition 16 (Obligation Equivalence).Let two obligation model$O;, —o,) and
0; C O, fori = 1,2 be given. Them; and o, are equivalent written 6; = 0o, iff
01 < 02 andoy < 01. &

The relation= is clearly symmetric.

Definition 17 (Policy Equivalence).Two privacy policiesPol; and Pol, with com-
patible vocabularies areequivalent written Pol; = Pol,, iff for every assignment
x € Assc(Var; U Varg) and every request € Req we have

r1 = r9 ando; = 09

for the evaluation result&ry, 61) := eval por, (¢, x) and(rz, 02) := eval por, (¢, X). <

“

“

A Toolkit for Managing Enterprise Privacy Policies 111

Clearly, policy equivalence is a symmetric relation, sinblgation equivalence is sym-
metric. We can now establish the following theorem.

Theorem 1. Two privacy policiesPoly, Poly are equivalent if and only if they are
mutual refinements. Formally,

Pol, = Poly, < Poly < Poly A\ Poly < Pol;.

O

Proof. Let an assignment € Assc(Var; U Vary) and an authorization request
g € Req be given. Note thatol; = Pols implies Req(Voc1) = Req(Vocz), as
otherwise there existg € Req(Vocy) \ Reg(Vocg) without loss of generality such
that eval poi,(q,x) = (scope_error,§) # evalpo, (q,x). Similarly, we can show
that Poly < Pols A Poly < Poly implies Req(Voci1) = Req(Vocs), as forqg €
Req(Voc1)\ Req(Vocg), we haveeval po, (g, X) = (scope_error,) # eval poi, (g, X).
which contradictsPoly < Poly. Therefore, we havéol; = Pol} fori = 1,2, with
Pol? as in Definition 15, i.e., we can consider the evaluatio®af; instead ofPol; to
show refinement. Hence I€t;, 0;) := eval poi,(q, x) = evalporx(q, x) fori = 1,2 be
the corresponding rulings.

=" Since policy equivalence is symmetric, it is sufficient twos that Pol, refines

Poly. If (r1,01) = (conflict_error, () then also(rs,02) = (conflict_error,)

because’ol; = Pols. If (r1,61) = (scope-error,), nothing has to be shown.

Now letr; € {+, 0, —}. Policy equivalence implies, = r; ando; = 61; this is

sufficient for refinement.

We distinguish the following cases:

(r1,01) = (conflict_error,®). Then we also havéry,02) = (conflict_error, d)
sincePols refinesPol;. This implieso; = o,.

(r1,01) = (scope_error, (). If ro # r1 we immediately obtain thaPol; is not a
refinement ofPols. Thusry = scope_error. This implieso, = @ and thus
(_)2 = (_)1.

r1 € {4+, —}. Thenry = r; sincePol, refinesPol; . Further, sincéPol; and Pols
are mutual refinements, we ha¥e < 05 ando, < 01 and thuss; = o,.

r1 = o. Assume for contradiction that € {+, —, scope_error, conflict_error}.
In this casePol; is no refinement oPol, any longer. Further, as in the previous
case, we have; < o, ando, < 01 and thus; = o-.

P

4 Composition of Privacy Policies

In this section, we introduce two notions of composition P8P policies, i.e., the
merging of two somehow compatible policies.

In an enterprise, policies may be defined on multiple levessinanagement hierar-
chy. A chief privacy officer (CPO) may define enterprise-wid@ndatory policy rules

112 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

that implement the applicable privacy laws. In additiore @PO can define defaults
that apply if a department does not define its own rules. A deyant can then define
its own privacy policy rules. These rules override the diétfiales but are overruled by
the mandatory rules of the CPO. In order to allow such digteith authoring and main-
tenance of privacy policies, we now introduce a notion ofigyotomposition. If two
policies are composed, both rule-sets are enforced. Byidgfthat one policy has a
higher precedence than the other, one can define one wayoteeeonflicts. For such
precedence shifts and for dealing with default values, &g stith the notion of the
normalizationof a policy.

4.1 Policy Normalization

Recall that the default ruling of a policy determines theulieg no rule applies for

a given request although the request is in the scope of theyp#Vhen composing
policies, different default rulings must be resolved fifgtis is simple if the scope is
the same or the default ruling is the same. To resolve the ctaakenging cases, we
first convert the default ruling of a policy into a set of notmales. These new rules
have the default ruling as their ruling, lowest precedeno@pbligations and conditions,
and they cover the root elements of all hierarchies.

Definition 18 (Policy with Removed Default Ruling).Let Pol = (Voc, R, dr) be a
privacy policy and € Z. Then thepolicy with removed default rulinépr Pol wrt. i is
the following policyrmDR(Pol, i):

If dr = o, thenrmDR(Pol, i) := Pol.

Else for every hierarchiWH = (H,>py), let roots(XH) := {x € H | -3z’ €
H: ' >p x}. ThenrmDR(Pol, i) := (Voc, R', o) with R := RU DR and

DR := {(i,u,d,p,a,0,0,dr) | u € roots(UH) A d € roots(DH)
A p € roots(PH) N\ a € roots(AH)}.

We abbreviatem DR (Pol) := rmDR(Pol, min(Pol) — 1). &

We now show that a policy with removed default ruling is eaiéwt to the original
policy if i is smaller than all the precedences in the original policy.

Lemma 1. Let Pol = (Voc, R, dr) be a privacy policy and € Z with i < min(Pol).
ThenrmDR(Pol,i) = Pol. In particular, this impliesrmDR(Pol) = Pol. O

Proof. Let a requesf € Req and an assignment € 2ssc (Var) be given. SinceéPol
andrmDR(Pol) have the same vocabulary, we can show refinement using the eva
ation of Pol andrmDR(Pol) instead ofPol* andrmDR(Pol)* as defined in Defini-
tion 15. Equal vocabularies also imply that either bothgies rule(scope_error, §) or
none of them.

If Pol rules(conflict_error, () then so doesmDR(Pol, i), since the rules iDR
have lower precedence than all rulesfin Furthermore, all rules ilDR have iden-
tical ruling; hence they cannot induce a conflict error. Thiteer both policies rule
(conflict_error, () or none of them.

A Toolkit for Managing Enterprise Privacy Policies 113

If arule p from R applies to this request, it applies for both policies, sienery rule
of Pol is also contained in the ruleset ofiDR(Pol,i). Moreover, every rule iDR
has lower priority tharp by construction. Hence neither a rule inR nor the default
ruling applies. ThusPol andrmDR(Pol, i) output the same pair-, 0). Conversely, if
arulep € DR applies, this means that no rule Bfapplies, but the request is in scope
of the policy. In this caséPol outputs(dr, o,..), Wherea,.. is the set of obligations
accumulated while processidg The policyrmDR(Pol, i) applies the rule, which
also yields(dr, 6,..) since no obligation is added by any ruleliR. []

Next, we introduce an operation for changing the precedehtee rules of a policy,
e.g., to overcome possible conflicts when merging the pdlith another one. As a
collective change for all rules seems useful, we define aggiesace shift, which adds
a fixed number to the precedence of all rules in a policy. Thizairticularly useful for
the example at the beginning of this section, where the degat policy can be shifted
downwards to have lower precedences than the policy of tt@. CP

Definition 19 (Precedence Shift)Let Pol = (Voc, R, dr) be a privacy policy and
j € Z. ThenPol + j := (Voc, R+ j,dr)with R + j := {(i + j,u,d,p,a,c,0,7) |
(i,u,d,p,a,c,0,7) € R} is called theprecedence shifif Pol by j. We definePol —
j = Pol + (—j). &

Lemma 2. A privacy policyPol is equivalent taPol + j for all j € Z.]

Proof. By Theorem 1, it is sufficient to show th&v! refinesPol + j for all j € Z.

Let j, a requesy € Reg, and an assignment € Assc (Var) be given. By con-
struction, the rules that apply to this requesPisl and Pol + j can only differ in their
precedence. Furthermore, if a rule appliesPwl, it also applies after the precedence
shift, since the precedencealf rules in Pol 4 j has been shifted similarly. Applying
the same rule in both policies in particular yields the sasteo$ obligations. Hence
Pol refinesPol + j. L]

We now define the normalization of a policy. This correspdndsprecedence shift
yielding a default ruling of preceden6eNormalized policies are used in the definition
of the ordered composition of two policies defined below.

Definition 20 (Normalized Policy).Let Pol be a privacy policy. Thenormg(Pol) :=
rmDR(Pol — min(Pol) + 1,0) is called thenormalized policyfor Pol. &

Lemma 3. For every privacy policyPol, we havenormg(Pol) = Pol.]

Proof. By definition, the precedence of all rulesiinrmg (Pol) is greater thaf. Hence
the claim follows from Lemmas 1 and 2. |

114 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

4.2 Definition of Composition

We now have the tools ready to turn our attention to policy position. The simplest
case of merging two policies with compatible vocabulargeticompute the union of
the two rule sets. This direct composition assumes that theepgences used in both
policies have a common meaning. However, translating tfeutteuling of a policy is
tricky: If elements are in the scope of only one policy, théadé# ruling of this policy
should apply. If elements are covered by both policies, dlicbhetween the two default
rulings needs to be resolved.

Definition 21 (Direct Composition). Let Pol; and Pols be two privacy policies
with compatible vocabularies. Let := min{min(Poly), min(Pols)} and Pol; :=
(Voc;, R}, 0) := rmDR(Pol;,m) for i = 1,2. Then

Poly U Poly := (Vocy U Voca, Ry U R}, 0)

is called thedirect compositiorf Pol; and Pols,. O

In our second type of composition, the rules of one policyel®l, should be applied
preferably. Hence the rules of the other policy are downgglacsing a precedence shift.
This also applies to the default ruling of the preferred@gii.e., the downgraded policy
is only used where it extends the scope of the preferredypdlicif no rule of the
preferred policy applies and the default rulingis

Definition 22 (Ordered Composition). Let Pol; and Pol, be two privacy policies
with compatible vocabularies. Létocy, R, o) :== rmDR(Poly — maz(Pol1) — 1),
and(Voca, R}, 0) := normg(Pols). Then

Polq Lj Poly := (VOCI U VOCQ,R/{ U R/270>
is called theordered compositionf Pol; underPols. o

By the intuitive introduction to ordered compositions, adered composition should
serve as a refinement &bl,. This is captured in the following lemma.

Lemma 4. For all privacy policiesPol, and Pol, with compatible vocabularies, we
havePol; Lﬂ Pols < Pols. O

Proof. Let Pol;, =: (Voc;, R;, dr;) for i := 1,2, and we use all notation from Defi-

nition 22. Let a request = (u, d, p,a) and an assignment € Assc (Vary U Vars)

be given. LetPol; and(Pol; |J Pols)* be defined according to Definition 15. Note
further that(Poly |§ Pols)* = Poly |J Pols since their vocabularies are equal. We
distinguish four cases:

1. Pol} rules (conflict_error,(): In this case, two rules of the same precedence
collided in Pol3. Sincei is larger than the precedence of any ruleRif by the
shifts, we also get a conflict iRol; | Polz, and an outputconflict_error, ().

2. Pol} rules(scope-error, 9): Nothing has to be shown for this case.

A Toolkit for Managing Enterprise Privacy Policies 115

3. Pol} rules(rq, 02) with 7o # o: This means that a rul@s, u, d, p, a, ca, 02, 72)
from R, is applicable. Because o # o the evaluation function will stop at the
precedence leveb. Since the precedencesBf are always less then zero by con-
struction wherea, > 0 by normalization, the same rules appliesinl; | Pols
and we obtain identical outputs, i.&¢l, | Pols also rulegr,, 62). Note that sev-
eral rules might have already occurred that added obligatimly. However, they
occur in bothPol3 and Pol; |§ Pol; and hence do not cause any harm.

4. No rule of R}, fits the current request, but the request is in the scop@odf. In
this case, the (expanded) default rulingfdfl; applies for bothPol; |§ Pol, and
Pol3, since this ruling has higher precedence than any rulBfinlf dry # o,
both policies rulgo, 62) for some obligation sei, which is again equal for both
policies since they processed the same set of rules so fdr,lf= o then the
evaluation function starts searching for matching rule®fn Here Pol; outputs
(0,02), whereasPol; |J Poly outputs(r, 52 Ua,) for somer anda, C Os. In order
to prove refinement, we obtath U, — ¢, 02 because ofy C 61 Ua2. This further
implieso, U 02 — 0,00, 02. Because ob, —o, 02 we obtaine; U o2 —o,u0,
02 —0, 02, Which proves refinement sineg € Oy = (01 U O2) N Os.

The composition operators fulfill certain laws:

Lemma5 (Laws for Policy Composition).Direct composition is commutative and
ordered composition is associative, i.e., for all privaofipies Pol; fori = 1, 2, 3 with
pairwise compatible vocabularies, we have

Poly | J Poly = Poly |] Poly;

(Poll S Polg) 5J Poly = Poly |4 (Poz2 S Poz3) .

O

Proof. (Sketch) The commutativity part is obvious. We now show tsoaiativity part.
The composition of vocabularies is associative. For thesetls(Polq | Pols) |J Pols
yields a ruleset where is the lowest precedence &%l3; and higher than the highest
precedence aPols, while Pol; |9 (Poly | Pols) yields a ruleset whergis the lowest
precedence ofol, and higher than the highest precedencePof;. By shifting the
second ruleset byiaz (Polz) —min(Pols)+1 one obtains a ruleset that is identical, and
thus clearly equivalent, to the first set. Since this prenedshift retains equivalence,
the second ruleset is equivalent to the first ruleset. L]

5 Two-Layered Privacy Policies

An enterprise must abide by the law. In addition, the condiest an individual has
granted when submitting data to an enterprise is mandataglaould not be changed.

116 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

In contrast, unregulated and non-promised issues can bly filecided by the enter-
prise, i.e., enterprise privacy practices can be changdidebgPO or the administrators
of the enterprise. In order to reflect this requirement, we imbroduce a distinction be-
tween mandatory and discretionary parts of a policy. Thpsagents a modal view of a
policy semantics [18]: The mandatory partistbe adhered to under any circumstances,
the remaining paninaybe adhered to. We capture this view by introduding-layered
policies

The real value of this notion lies in new possibilities fomgoosition that cannot
be captured by just taking the ordered composition of therdi®nary part under the
mandatory part.

5.1 Syntax and Semantics of Two-Layered Privacy Policies

Syntactically, a two-layered policy is simply a pair of (afuprivacy policies. The first
element is the mandatory part and the second element thetiiisary part.

Definition 23. A pair Pol = (Poly, Poly) of privacy policies with compatible vocab
ularies is called awo-layered policy The policyPol; is called themandatory parbf
Pol, and Pol, thediscretionary part O

The semantics of such a two-layered policy is described adgarithm, given an au-
thorization request € Req and an assignmemt € Assc (Vary U Varg):

— Evaluate mandatory policfvaluate the requegtunderPol;, yielding (r1, 01).

— First policy dominateslf v, ¢ {o, scope_error}, output(ry, oy).

— Evaluate second policyf r; € {o, scope_error}, evaluate the requegtunder
Pols, yielding (72, 02). If 72 = scope_error andr, = o, output(rq,01), else
output(rz, 01 U 03).

This captures the intuition thd®ol; is mandatory: Only ifPol; does not care about
a request, or if it does not capture the request, the discraty partPol, is executed.
Note that the mandatory part can still be used to accumuldigations, e.g., for strictly
requiring that every employee has to send a notificationg@hher manager before a
specific action.

We now show that the resulting semantics is the same as tlweitlefed composi-
tion, as one would expect. Recall, however, that the contipasiperators make use of
the fact that a two-layered policy retains the informatidrick parts were mandatory.

Lemma 6. For Pol := (Poly, Poly), the two-layered semantics is equivalent to the
ordinary semantics of an ordered compositidtul = Poly | Pol;.]

Proof. We have to show that evaluation 86/ and PolC := Pols |J Pol; always re-
turn the same ruling and equivalent obligations. . Let usdissume that the evaluation
of Pol outputs(ry,01) with 1 € {4, —} (first policy dominates), i.e., the request was
in the scope ofPol; and produced a ruling: or —. Hence when evaluatingolC, only
higher precedence rules 8bl; are used an@®olC also outputgry, o1).

Let us now assume that = scope_error in Pol. Then the result is determined by
Pol,. The same holds faPolC.

A Toolkit for Managing Enterprise Privacy Policies 117

Let us finally assume that,, o;) was output byPol; with r, = o. If the request is
in the scope oPols, thenPol and PolC will output the ruling of Pol, with a union of
both obligations. If the request is out of the scopéof,, the pair(r, 01) is outputin
both cases. L]

This lemma and Lemma 4 imply théPol,, Pols) < Poly, i.e., that every two-layered
policy refines its mandatory part.

5.2 Refinement and Composition of Two-Layered Policies
For two-layered privacy policies, we define the followindina of refinement.

Definition 24 (Two-Layered Refinement). Let two-layered policies Pol =
(Poly, Poly) and Q = (Q1,Q2) be given wherePol; and Q; as well asPol, and
Q- have compatible vocabularies. Th&al is arefinemendf @, written Pol < Q, iff
Poly < Ql and Pols = QQ. O

The distinction between mandatory and discretionary farébled us to use the notion
of weak refinement: We require that the mandatory part is mabrefinement. This re-
flects that access rights as well as denials must be preséitvediscretionary part may
be weakly refined. This reflects the fact that this part can bdified at the discretion
of the enterprise.

Coming up with a meaningful definition of composing two-lese policies is more
difficult. The main goal is to never violate any mandatorytp@omposing the manda-
tory parts either according to Definition 21 or 22 would tyglig overrule some manda-
tory rules, which would defeat this goal. Therefore, we aallpw to compose two-
layered policies if the rulesets of their respective maodaparts arecollision-free
which means that for all requests and all assignments, iev®mnthe case that one
mandatory part accepts the request (i.e., it rei¢swhereas the other one denies the
request (i.e., it rules-).

Definition 25 (Collision-Free).Two privacy policiesPol; and Pol, with compatible
condition vocabularies are calledollision-freeif for all requestsq € Req and all
assignmenty € 2ssc(Vary U Vary) the following holds: IfPol; rules (r;, ;) for
1=1,2, then{T‘l,TQ} 7é {+,7} &

Two-layered policies with conflicting mandatory parts canbe composed. For two-
layered policies with collision-free mandatory parts, vedie composition as follows:

Definition 26 (Two-Layered Composition). Let two-layered policiesPol =

(Poly, Poly) and@ = (Q1, Q2) be given whereéPol; and @, as well asPols and Q2

have compatible vocabularies, athl; and @), are collision-free. Then theomposi-
tion of Pol and(is defined asPol | Q := (Pol1 |J Q1, Pol2 |J Q2). Similarly, theor-

dered compositioof Pol underQ is defined aol |J Q := (Poly |J Q1, Pols|d Q2).

<&

The following lemma shows the main property that this contpmswants to preserve,
i.e., that the resulting composed policy refines both mangatarts.

118 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

Lemma 7. Let two-layered policie$ol = (Poly, Poly) and@Q = (@1, Q2) be given
such thatPol; and @, as well asPol, and @, have compatible vocabularies. More-
over, Pol; andQ); are collision-free. The®Pol | Q is a refinement of). Furthermore,
PolC := Pol|d Q is arefinement oPol; and Q). O

Proof. The first claim follows directly from Lemma 4. Lemma 6 impligt PolC =
(Pola |9 Q2) |J (Poly |J Q1). The fact thatPolC is a refinement of); follows from
Lemma 4.

Let us now assume thaolC' does not refinePol;. Since PolC refines(Pol; |
Q1), this implies thai Pol; | Q1) does not refinePol;. This implies that there exists
a request within the scope &b/, and@; such that); does not rule since otherwise
the ruling of Pol; would be output. For this request, the rulingsfafl; and@); differ,
which contradicts our assumption thaé/; and@; are collision-free. L]

6 Conclusion

Privacy policies are a core component for enterprise pyitechnologies. The current
proposals for privacy policies required policy authorsreate one single overall policy
for the complete enterprise(s) that are covered. We thexelfescribed a toolkit to han-
dle multiple policies. This includes refinement for auditiand policy validation and
composition for multi-domain or delegated-authorshigges. In addition, we intro-
duced a new notion of two-layered policies to track mandedod discretionary parts.
This enables privacy administrators to detect and resalndlicts between mandatory
policies, e.g., if a customer promise or another contraatlv@iolate a law. These
tools enable the privacy officers of an enterprise to creadenaanage the complex pri-
vacy policy of an enterprise more efficiently while retaimithe semantic rigor that is
required for trustworthy privacy management.

Acknowledgments

We thank Gunter Karjoth, Calvin Powers, and Michael Waidioe valuable discus-
sions.

References

1. P.Ashley, S. Hada, G. Karjoth, C. Powers, and M. SchuBtgerprise Privacy Authorization
Language (EPAL). Research Report 3485, IBM Research, 2a03p: / / www. zur i ch.
ibmconisecurity/enterprise-privacy/epal/specification.

2. P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3Rapyipolicies and privacy autho-
rization. InProc. 1st ACM Workshop on Privacy in the Electronic Soci8#PES) pages
103-109, 2002.

3. A. Belokosztolszki and K. Moody. Meta-policies for dibtrted role-based access control
systems. IrProc. 3rd IEEE International Workshop on Policies for Dibuted Systems and
Networks (POLICY,)pages 106-115, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

A Toolkit for Managing Enterprise Privacy Policies 119

C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekerat. igation monitoring in policy
management. IRroc. 3rd IEEE International Workshop on Policies for Dibtited Systems
and Networks (POLICYpages 2-12, 2002.

. P. A. Bonatti, E. Damiani, S. De Capitani di Vimercati, dadSamarati. A component-

based architecture for secure data publication.Pitoc. 17th Annual Computer Security
Applications Conferencgpages 309-318, 2001.

. P. A. Bonatti, S. De Capitani di Vimercati, and P. Samaratinodular approach to compos-

ing access control policies. Proc. 7th ACM Conference on Computer and Communications
Security pages 164-173, 2000.

. P. A. Bonatti, S. De Capitani di Vimercati, and P. Sama#ati algebra for composing access

control policies.ACM Transactions on Information and System Secufity):1-35, 2002.

. A. Cavoukian and T. J. HamiltonThe Privacy Payoff: How successful businesses build

customer trustMcGraw-Hill/Ryerson, 2002.

. S. De Capitani di Vimercati and P. Samarati. An authoidratnodel for federated systems.

In Proc. 4th European Symposium on Research in Computer 8e(E8ORICS)volume
1146 ofLecture Notes in Computer Scienpages 99-117. Springer, 1996.

S. Fischer-HiibnedT-security and privacy: Design and use of privacy-enhagaecurity
mechanismsvolume 1958 ot ecture Notes in Computer Scien&@pringer, 2002.

Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, |. Baldine, andX@. IPSec/VPN security
policy: Correctness, conflict detection and resolutiorPdoc. 2nd IEEE International Work-
shop on Policies for Distributed Systems and Networks (X¥0,lvolume 1995 oL ecture
Notes in Computer Scienggages 39-56. Springer, 2001.

V. Gligor, H. Khurana, R. Koleva, V. Bharadwaj, and J.&arOn the negotiation of access
control policies. InProc. 9th International Workshop on Security Proto¢c@802.

H. Hosmer. The multipolicy paradigm. Rroc. 15th National Computer Security Confer-
ence pages 409-422, 1993.

S. Jajodia, M. Kudo, and V. S. Subrahmanian. Provisiaughorization. InProc. E-
commerce Security and Privaqyages 133—-159. Kluwer Academic Publishers, 2001.

S. Jajodia, P. Samarati, M. L. Sapino, and V. Subrahmarftéexible support for multiple
access control policieACM Transactions on Database Syste@®(4):216—260, 2001.

G. Karjoth and M. Schunter. A privacy policy model for emrises. InProc. 15th IEEE
Computer Security Foundations Workshop (CSHipes 271-281, 2002.

G. Karjoth, M. Schunter, and M. Waidner. The platform déoterprise privacy practices —
privacy-enabled management of customer dataPrbt. Privacy Enhancing Technologies
Conferencevolume 2482 ofLecture Notes in Computer Sciengemges 69—84. Springer,
2002.

J. D. Moffett and M. S. Sloman. Policy hierarchies fortritisited systems management.
IEEE JSAC Special Issue on Network Managemth(9):1404-31414, 1993.

Platform for Privacy Preferences (P3P). W3C Recomntarda\pr. 2002.ht t p: / / waww.
w3. or g/ TR/ 2002/ REC- P3P- 20020416/ .

C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SkLadtess control language for
security policies with complex constraints.Pnoc. Network and Distributed System Security
Symposium (NDSS3001.

TRUSTe. Privacy Certification. Availableaiw. t r ust e. com

eXtensible Access Control Markup Language (XACML). @3 &ommittee Specification
1.0, Dec. 2002www. oasi s- open. or g/ commi tt ees/ xacni .

