
A Toolkit for Managing Enterprise Privacy Policies

Michael Backes, Birgit Pfitzmann, and Matthias Schunter

IBM Zurich Research Laboratory, Rüschlikon, Switzerland
{mbc,bpf,mts}@zurich.ibm.com

Abstract. Enterprise privacy enforcement allows enterprises to internally en-
force a privacy policy that the enterprise has decided to comply to. An enterprise
privacy policy often reflects different legal regulations,promises made to cus-
tomers, as well as more restrictive internal practices of the enterprise. Further,
it may allow customer preferences. Hence it may be authored,maintained, and
audited in a distributed fashion.
Our goal is to provide the tools for such management of enterprise privacy poli-
cies. The syntax and semantics is a superset of the Enterprise Privacy Autho-
rization Language (EPAL) recently proposed by IBM. The basic definition is
refinement, i.e., the question whether fulfilling one policyautomatically fulfills
another one. This underlies auditing of a policy against an old or new regulation
or promise and transferring data into a realm with a different policy. It is also
the semantic basis for composition operators. We further define such composi-
tion operators for different purposes. Our main focus it to combine usability for
enterprises, e.g., by treating multiple terminologies, incomplete data, and differ-
ent types of errors and defaults, with the formal rigor needed to make privacy
compliance meaningful and predictable.

1 Introduction

An increasing number of enterprises make privacy promises to customers or, at least in
the US and Canada, fall under new privacy regulations. To ensure adherence to these
promises and regulations, enterprise privacy technologies are emerging [8]. An impor-
tant tool for enterprise privacy enforcement is formalizedenterprise privacy policies
[10, 17, 16]. Compared with the well-known language P3P [19]intended for privacy
promises to customers, languages for the internal privacy practices of enterprises and
for technical privacy enforcement must offer more possibilities for fine-grained distinc-
tion of data users, purposes, etc., as well as a clearer semantics.

Although the primary purpose of enterprise privacy policies is enterprise-internal
use, many factors speak for standardization of such policies: First, it would allow cer-
tain technical parts of regulations to be encoded into such astandardized language once
and for all. Secondly, a large enterprise with heterogeneous repositories of personal data
could then hope that enforcement tools for all these repositories become available that
allow the enterprise to consistently enforce at least the internal privacy practices cho-
sen by the CPO (chief privacy officer). Thirdly, with increasingly dynamic e-business,
data will be exchanged between enterprises, and enterpriseboundaries change due to
mergers, acquisitions, or virtual enterprises. Then the sticky-policy paradigm stressed
in papers like [17] must be enforced. It states that the policy under which data have been



102 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

collected has to govern the use of these data at all times. This also requires compati-
ble enterprise privacy enforcement mechanisms. For these reasons, IBM has recently
proposed an Enterprise Privacy Authorization Language (EPAL) [1] as an XML speci-
fication for public comments and possible subsequent input to standardization.

An enterprise privacy policy often reflects different legalregulations, promises
made to customers, as well as more restrictive internal practices of the enterprise.
Further, it may allow customer preferences. Hence it may be authored, maintained,
replaced, and audited in a distributed fashion. In other words, one will need a life-
cycle management system for the collection of enterprise privacy policies. While such
thoughts occur as motivation in most prior work on enterprise privacy policies, no actual
definitions and algorithms needed for these management tools have been proposed.

The overall goal of this article is therefore to provide a comprehensive range of tools
for designing and managing privacy policies in an enterprise. We do this concretely for
the IBM EPAL proposal. However, for a scientific paper we cannot use the lengthy
XML syntax, but have to use a corresponding abstract syntax presented in [2] (which,
like EPAL, is based on [17]). Our paper reflects recent updates made between the earlier
abstract [2] and the published specification and XML Schema [1], so that it is currently
as close as possible to EPAL. Further, we do not abstract fromconditions in contrast
to [2] so that we can define a semantics for incomplete contextdata, which is useful
both in general practice and specifically for refinements andcomposition of policies
from different realms. In spite of the current closeness to EPAL, we continue to call the
abstract language E-P3P as in [2] to avoid confusion with possible changes to EPAL.

The first tool we define is policy refinement. Intuitively, onepolicy refines another
if using the first policy automatically also fulfills the second policy. It is thus the fun-
damental notion for many situations in policy management. For instance, it enables
verification that an enterprise policy fulfills regulationsor adheres to standards set by
consumer organizations or a self-regulatory body, assuming only that these coarser re-
quirements are once and for all also formalized as a privacy policy. Similarly, it enables
verification that a detailed policy for a part of the enterprise (defined by responsibility
or by technology) refines the overall privacy policy set by the company’s CPO. The
verification can be done in the enterprise or by external auditors, such as [21].

When a policy is first designed, refinement may be achieved in aconstructive way,
e.g., by starting with the coarse policy and only adding details by certain provably re-
fining syntactic means. However, if a regulation changes or the enterprise extends its
operation to new sectors or countries, the enterprise has toverify that its existing policy
still complies with the new or additional regulations. Hence a definition of refinement
between two arbitrary policies is needed. Sticky policies are another application of gen-
eral refinement: Here data are transferred from the realm of one policy into another
(where the transfer must of course be permitted by the first policy), and the second
realm must enforce the first policy. However, the enforcement mechanisms (both orga-
nizational and technical) in the second realm will often notbe able to deal with arbitrary
policies for each obtained set of data. In this case, one realm must perform a refinement
test before the data are transferred, i.e., one has to verifythat the policy of the second
realm refines the policy of the first, at least for the restriction of the first policy to the
data types being transferred.



A Toolkit for Managing Enterprise Privacy Policies 103

Composition is the notion of constructively combining two or more policies; typ-
ically the goal is that the resulting policy refines them all.For instance, an enterprise
might first take all applicable regulations and combine theminto a minimum policy.
A general promise made to customers, e.g., an existing P3P translated into the more
general language, may be a further input. In enterprise parts that support detailed pref-
erences of individuals, such preferences may be yet anotherpolicy to be composed with
the others, yielding one final policy per individual. (In contrast, simple preferences may
be represented as a set of Boolean opt-in or opt-out choices,and treated as context data
by conditions within a single policy.) Typical applications where detailed preferences
are needed are wallet-style collections of user data for thepurpose of transfer to other
enterprises, and collaborative tools such as team-rooms.

Composition is not a simple logical AND for powerful enterprise privacy policies
as in EPAL, e.g., because of the treatment of obligations, different policy scopes, and
default values. Moreover, refinement and composition turn up two basic questions about
the meaning of a privacy policy, which are not answered by theabstract semantics of
an individual policy. The first question is the meaning of a positive ruling in privacy
policies. Intuitively, negative rulings are understood tobe definite; e.g., if a policy states
that certain data are not used for email marketing, then no such email marketing should
happen. The intuition is different for most positive rulings: If a policy allows third-party
email marketing, it is typically not seen as a promise to actually do marketing, neither
to the owners of the email addresses nor to the third parties.However, if one decides to
represent access rights for data subjects to their data, such as the right to see all their data
or to correct mistakes, with the normal policy mechanisms, then these positive rulings
must be mandatory. The second question is related: If a privacy policy, like EPAL,
is formulated with precedences to enable easy formulationsof positive and negative
exceptions, then within a policy, neither negative nor positive rules are “final”, i.e.,
can be considered isolated from the policy. In contrast, in compositions, one may want
to retain an entire original policy as final. We solve both these problems by allowing
mandatory sub-policies. This allows us to distinguish finaldecisions from decisions that
may be overturned by other rules, and thus to represent all the cases just discussed. We
extend the notion of composition and refinement to these two-part policies.

Further related literature.The core contribution of new privacy-policy languages [10,
17, 16], compared with other access-control languages, is the notion of purpose and
purpose-bound collection of data, which is essential to privacy legislation. Other nec-
essary features that prevent enterprises from simply usingtheir existing access-control
systems are obligations and conditions on context information. Individually, these fea-
tures were also considered in recent literature on access control, e.g., purpose hierar-
chies in [5], obligations in [4, 14, 20], and conditions on context information in [22].
However, we need them all in one language, and even for the individual features the
detailed semantics needed in practice, such as with multiple terminologies, typically
does not exist yet, and thus nor does a comparable toolkit. Policy composition has been
treated before, in particular for access control [6, 7, 9, 13, 15, 22], systems management
[18], or IPSEC [11]; however none of these papers does it for the general policies we
need and several do not have a clear underlying semantics. The publications closest to



104 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

our treatment of incomplete data are those on information-disclosure-minimal negotia-
tion of access-control policies, e.g., [3, 12].

2 Syntax and Semantics of E-P3P Enterprise Privacy Policies

Privacy policies define the purposes for which collected data can be used, model the
consent a data subject can give, and may impose obligations onto the enterprise. They
can formalize privacy statements like “we use data of a minorfor marketing purposes
only if the parent has given consent” or “medical data can only be read by the patient’s
primary care physician”. In this section, we present the abstract syntax and semantics
E-P3P of IBM’s EPAL privacy policy language [1]. Compared with [2], we abstract less
from conditions and obligations, so that we can present a more detailed semantics.

2.1 Hierarchies, Obligations, and Conditions

We start by defining the models of hierarchies, obligations,and conditions used in E-
P3P, and operations on them as needed in later refinements andcompositions.

For conveniently specifying rules, the data, users, etc. are categorized in E-P3P as
in many access-control languages. This also applies to the purposes. In order to allow
structured rules with exceptions, categories are ordered in hierarchies; mathematically
they are forests, i.e., multiple trees. For instance a user “company” may group sev-
eral “departments”, each containing several “employees”.The enterprise can then write
rules for the whole “company” with exceptions for some “departments”.

Definition 1 (Hierarchy). A hierarchyis pair (H, >H) of a finite setH and a transi-
tive, non-reflexive relation>H ⊆ H×H , where everyh ∈ H has at most one immediate
predecessor (parent). As usual we write≥H for the reflexive closure.

For two hierarchies(H, >H) and(G, >G), we define

(H, >H) ⊆ (G, >G) :⇔ (H ⊆ G) ∧ (>H ⊆ >G);

(H, >H) ∪ (G, >G) := (H ∪ G, (>H ∪ >G)∗);

where∗ denotes the transitive closure. Note that a hierarchy unionis not always a
hierarchy again. 3

E-P3P policies can impose obligations, i.e., duties for theenterprise. Examples are to
send a notification to the data subject after each emergency access to medical data, or
to delete data after a given time. Obligations are not structured in hierarchies, but by an
implication relation. For instance, an obligation to delete data within 30 days implies
that the data are deleted within 60 days. The overall obligations for a rule in E-P3P are
written as sets of individual obligations, which must have an interpretation in the appli-
cation domain. As multiple obligations may imply more than each one individually, we
define the implication (which must also be realized in the application domain) on these
sets. We also define how this relation interacts with vocabulary extensions.



A Toolkit for Managing Enterprise Privacy Policies 105

Definition 2 (Obligation Model). An obligation modelis a pair (O,→O) of a setO
and a relation→O ⊆ P(O) × P(O), spokenimplies, on the powerset ofO, where
ō1 →O ō2 for all ō2 ⊆ ō1, i.e., fulfilling a set of obligations implies fulfilling allsub-
sets.

For O′ ⊃ P(O), we extend the implication toO′ × P(O) by ((ō1 →O ō2) :⇔
(ō1 ∩ P(O) →O ō2)). 3

The decision formalized by a privacy policy can depend on context data. Examples are
a person’s age or opt-in consent. In EPAL this is representedby conditions over data in
so-called containers [1]. The XML representation of the formulas is taken from [22],
which corresponds to a predicate logic without quantifiers.In the abstract syntax in [2],
conditions are abstracted into propositional logic, but this is too coarse for our purposes.
Hence we extend E-P3P to be closer to EPAL by formalizing the containers as a set of
variables with domains, and the conditions as formulas overthese variables.

Definition 3 (Condition Vocabulary). A condition vocabularyis a pair Var =
(V,Scope) of a finite setV and a function assigning everyx ∈ V , called avariable, a
setScope(x), called itsscope.

Two condition vocabulariesVar1 = (V1,Scope1), Var2 = (V2,Scope2) are com-
patibleif Scope

1
(x) = Scope

2
(x) for all x ∈ V1 ∩ V2. For that case, we define their

unionbyVar1 ∪ Var2 := (V1 ∪ V2,Scope1 ∪ Scope2).
3

In the future, one might extend this to a full signature in thesense of logic, i.e., including
predicate and function symbols. In EPAL, this is hidden in user-defined functions that
may occur in the XACML conditions. For the moment, we assume agiven universe of
predicates and functions with fixed domains and semantics.

Definition 4 (Condition Language).Let a condition vocabularyVar = (V,Scope)
be given.

– Thecondition languageC(Var ) is the set of correctly typed formulas overV us-
ing the assumed universe of predicates and functions, and inthe given syntax of
predicate logic without quantifiers.

– The free variables of a formulac ∈ C(Var) are denoted byfree(c). Here these are
all variables ofc.

– A (partial) assignmentof the variables is a (partial) functionχ : V →
⋃

x∈V Scope(x) with χ(x) ∈ Scope(x) for all x ∈ V . The set of all assignments
for the setVar is writtenAss(Var); that of all partial assignmentsAss⊆(Var).

– For χ ∈ Ass(Var), let evalχ : C(Var) → {true, false} denote the evaluation
function for conditions given this variable assignment. This is defined by the un-
derlying logic and the assumption that all predicate and function symbols come
with a fixed semantics.

3

An important aspect of our semantics is the ability to deal meaningfully with under-
specified requests. This means that a condition might not be evaluatable since only a



106 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

subset of the variables used in the conditions has been assigned. This is important not
only in federated scenarios as introduced in [9], but also for overall in-enterprise poli-
cies. For instance, some rules of a policy may need the age of aperson or its employee
role, while for many people no age or employee role is known inthe enterprise. This
typically does no harm because other rules apply to these persons. For such situations,
we will need to know whether a condition can still becometrue or false , respectively,
when a partial assignment is extended. Hence we define extensions.

Definition 5 (Extension of partial assignments).Let a condition vocabularyVar =
(V,Scope) be given. Ifχ ∈ Ass⊆(Var) is defined onU ⊆ V , let

Ext(χ,Var) := {χ∗ ∈ Ass(Var) | ∀u ∈ U : χ∗(u) = χ(u)}

denote the set ofextensionsof χ. 3

2.2 Syntax of E-P3P Policies

An E-P3P policy is a triple of a vocabulary, a set of authorization rules, and a default rul-
ing. The vocabulary defines element hierarchies for data, purposes, users, and actions,
as well as the obligation model and the condition vocabulary. Data, users and actions
are as in most access-control policies (except that users are typically called “subjects”
there, which in privacy would lead to confusion with data subjects), and purposes are
an important additional hierarchy for the purpose binding of collected data.

Definition 6 (Vocabulary). A vocabulary is a tuple Voc = (UH ,DH ,PH ,AH ,

Var ,OM ) whereUH , DH , PH , andAH are hierarchies called user, data, purpose,
and action hierarchy, respectively, andVar is a condition vocabulary andOM an obli-
gation model. 3

As a naming convention, we assume that the components of a vocabulary calledVoc are
always called as in Definition 6 withUH = (U, >U ), DH = (D, >D), PH = (P, >P

), AH = (A, >A), Var = (V,Scope), andOM = (O,→O), except if explicitly
stated otherwise. In a vocabulary calledVoci all components also get a subscripti,
and similarly for superscripts. A rule set contains authorization rules that allow or deny
operations. A rule basically consists of one element from each vocabulary component.
Additionally, it starts with an integer precedence, and ends with a ruling.

Definition 7 (Ruleset and Privacy Policy).A rulesetfor a vocabularyVoc is a subset
of Z × U × D × P × A × C(Var) × P(O) × {+, ◦,−}.

A privacy policyor E-P3P policyis a triple (Voc, R, dr) of a vocabularyVoc, a
rule-setR for Voc, and adefault rulingdr ∈ {+, ◦,−}. The set of these policies is
calledEP3P , and the subset for a given vocabularyEP3P (Voc). 3

In EPAL, precedences are only given implicitly by the textual order of the rules. Hence
our explicit precedences, and the fact that several rules can have the same precedence,
make E-P3P a superset of EPAL. The rulings+, ◦, and−mean ‘allow’, ‘don’t care’, and
‘deny’. The ruling◦ was not yet present in [2]. In EPAL, it is called ‘obligate’ because



A Toolkit for Managing Enterprise Privacy Policies 107

it enables rules that do not make a decision, but only impose additional obligations. An
example is a global rule “Whenever someone tries to access mydata, I want to receive
a notification”.

As a naming convention, we assume that the components of a privacy policy called
Pol are always called as in Definition 7, and ifPol has a sub- or superscript, then so do
the components.

2.3 Semantics of E-P3P Policies

An E-P3P request is a tuple(u, d, p, a) which should belong to the setU×D×P×A for
the given vocabulary. Note that E-P3P and EPAL requests are not restricted to “ground
terms” as in some other languages, i.e., minimal elements inthe hierarchies. This is use-
ful if one starts with coarse policies and refines them because elements that are initially
minimal may later get children. For instance, the individual users in a “department” of
an “enterprise” may not be mentioned in the CPO’s privacy policy, but in the department
privacy policy. For similar reasons, we also define the semantics for requests outside the
given vocabulary. We assume a supersetS in which all hierarchy sets are embedded; in
practice it is typically a set of strings or valid XML expressions.

Definition 8 (Request).For a vocabularyVoc, we define the set ofvalid requestsas
Req(Voc) := U×D×P×A. Given a supersetS of the setsU, D, P, A of all considered
vocabularies, the set ofall requestsis Req := S4. 3

The semantics of a privacy policyPol is a functionevalPol that processes a request
based on a given, possibly partial, assignment.

The evaluation result is a pair(r, ō) of a ruling (decision) and associated obligations.
Our semantics extends that of [2] in three ways. First, we have to deal with the new
partial assignments in the conditions of rules. Secondly, the ruling◦ that was added
to the rule syntax gets a semantics; as explained above it is used to make obligations
without enforcing a decision. Thirdly, the rulingr may not only be+, ◦, or − as in a
rule, but alsoscope error or conflict error . This denotes that the request was out of
scope of the policy or that there was a conflict among applicable rules. The reason for
distinguishing these errors is that out-of-scope errors can be eliminated by enlarging the
policy, in contrast to conflict errors. This will become important for policy composition.

The semantics is defined by a virtual pre-processing that unfolds the hierarchies and
a request processing stage. Note that this is only a compact definition of the semantics
and not an efficient real evaluation algorithm.

Definition 9 (Unfolded Rules).For a privacy policyPol = (Voc, R, dr), theunfolded
rule setUR(Pol ) is defined as follows:

URdown(Pol ) := {(i, u′, d′, p′, a′, c, ō, r) | ∃(i, u, d, p, a, c, ō, r) ∈ R

with u ≥U u′ ∧ d ≥D d′ ∧ p ≥P p′ ∧ a ≥A a′};

UR(Pol ) := URdown(Pol )

∪ {(i, u′, d′, p′, a′, c, ō,−) | ∃(i, u, d, p, a, c, ō,−) ∈ URdown(Pol )

with u′ ≥U u ∧ d′ ≥D d ∧ p′ ≥P p ∧ a′ ≥A a}.

3



108 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

Note that ‘deny’-rules are inherited both downwards and upwards along the four hier-
archies while ‘allow’-rules are inherited only downwards.The reason is that the hier-
archies are considered groupings; if access is forbidden toan element of a group, it is
also forbidden for the group as a whole.

Next we define which rules are applicable for a request given apartial assignment of
the condition variables. These (unfolded) rules have the user, data, purpose, and action
as in the request. Positive rules are only defined to be applicable if they evaluate totrue

for all extensions of the partial assignmentχ. Negative and don’t-care rules are defined
to be applicable whenever the conditions could still becometrue. For instance, if a rule
forbids access to certain data for minors, a child should notbe able to obtain access by
omitting its age, and obligations from don’t-care rules forchildren should apply.

Definition 10 (Applicable Rules).Let a privacy policyPol = (Voc, R, dr), a request
q = (u, d, p, a) ∈ Req(Voc), and a partial assignmentχ ∈ Ass⊆(Var) be given. Then
the set ofapplicable rulesis

AR(Pol , q, χ) :=

{(i, u, d, p, a, c, ō, +) ∈ UR(Pol ) | ∀χ∗ ∈ Ext(χ,Var ) : evalχ∗(c) = true}

∪ {(i, u, d, p, a, c, ō, r) ∈ UR(Pol ) | r ∈ {−, ◦} ∧

∃χ∗ ∈ Ext(χ,Var) : evalχ∗(c) = true}.

3

For formulating the semantics, we need the maximum and minimum precedence in a
policy.

Definition 11 (Precedence Range).For a privacy policyPol = (Voc, R, dr), let
max (Pol ) := max{i | ∃(i, u, d, p, a, c, ō, r) ∈ R}, and similarlymin(Pol ). 3

We can now define the actual semantics, i.e., the result of a request given a partial as-
signment. Recall that rules with ruling◦ are provided to allow obligations to accumulate
before the final decision; this is done in a setōacc.

Definition 12 (Semantics).Let a privacy policyPol = (Voc, R, dr), a requestq =
(u, d, p, a) ∈ Req, and a partial assignmentχ ∈ Ass⊆(Var) be given. Then theevalu-
ation result(r, ō) := evalPol(q, χ) of policyPol for q andχ is defined by the following
algorithm, starting with̄oacc := ∅. Every “return” aborts the algorithm.

– Out-of-scope testing.If q 6∈ Req(Voc), return(r, ō) := (scope error , ∅).
– Processing by precedence.For each precedence leveli := max (Pol ) down to

min(Pol):
• Accumulate obligations.For each applicable rule(i, u, d, p, a, c, ō′, r) ∈

AR(Pol , q, χ), setōacc := ōacc ∪ ō′.
• Conflict detection. If two conflicting rules (i, u, d, p, a, c1, ō1, +) and

(i, u, d, p, a, c2, ō2,−) exist inAR(Pol , q, χ), return(conflict error , ∅).
• Normal ruling.If at least one rule(i, u, d, p, a, c, ō′, r) ∈ AR(Pol , q, χ) with

r 6= ◦ exists, return(r, ōacc).
– Default ruling.If this step is reached, return(r, ō) := (dr , ōacc).

We also say that policyPol rules(r, ō) for q andχ, omittingq andχ if they are clear
from the context. 3



A Toolkit for Managing Enterprise Privacy Policies 109

3 Refinement of Privacy Policies

In this section, we define the notion of refinement for E-P3P policies. As explained in
the introduction, refinement is the foundation of almost alloperations on policies. We
further define policy equivalence and show that it equals mutual refinement.

Refining a policyPol1 means adding more details, both rules and vocabulary, while
retaining its meaning with respect to the original vocabulary. Our notion of refinement
allows policyPol2 to define a ruling ifPol1 does not care. Additionally, it is allowed to
extend the scope of the original policy and to define arbitrary rules for the new elements.
In all other cases, the rulings of both policies must be identical. This also comprises
the rulingconflict error . For new elements however, we have to capture that if they
are appended to the existing hierarchies, there could existapplicable rules for these
elements if they were already present, and newly added rulesfor these elements could
influence existing elements as well. As an example, a rule fora “department” may forbid
its “employees” to access certain data for marketing purposes. Now if a new employee
is added, this rule should as well be applicable; furthermore, defining a new rule for
this case with higher precedence, e.g., granting the new employee an exception to the
department’s rule should obviously not yield a refinement any more. In our definition
of refinement, we therefore do not evaluate each policy on itsown vocabulary but on
the joint vocabulary of both policies. Since joining two vocabularies, i.e., joining their
respective hierarchies, might not yield another vocabulary, we introduce the notion of
compatible vocabularies.

Definition 13 (Compatible Vocabulary).Two vocabulariesVoc1 andVoc2 are com-
patibleif their condition vocabularies are compatible and all hierarchy unionsUH 1 ∪
UH 2, DH 1 ∪DH 2, PH 1 ∪ PH 2, andAH 1 ∪AH 2 are hierarchies again.

We define theunionof two compatible vocabularies asVoc1 ∪ Voc2 := (UH 1 ∪
UH 2, DH 1 ∪ DH 2, PH 1 ∪ PH 2, AH 1 ∪ AH 2, Var1 ∪Var2, OM 1 ∪OM 2).

3

Dealing with the respective obligations is somewhat more difficult. Intuitively, one
wants to express that a finer policy may also contain refined obligations. However, since
a refined policy might contain additional obligations, whereas some others have been
omitted, it is not possible to simply compare these obligations in the obligation model
of the original policy. (Recall that we also use refinement tocompare arbitrary poli-
cies; hence one cannot simply expect that all vocabulary parts of the refined policy are
supersets of those of the coarser policy.)

As an example, let the obligation model of the coarser policycontain obligations
o = “delete in a week” ando1 = “delete in a month” with the implicationo →O1

o1. The
refined policy containso2 = “delete immediately” ando as above witho2 →O2

o. Now
o2 should be a refinement ofo1, but this cannot be deduced in either of the obligation
models. Hence both obligation models have to be used, i.e., one haso2 →O2

o →O1
o1.

We define this asobligation refinement. In order to obtain a meaningful refinement from
the point of view ofPol1, the relation→O2

has to be certified by a party trusted by the
maintainer ofPol1.

Definition 14 (Obligation Refinement). Let two obligation models(Oi,→Oi
) and

ōi ⊆ Oi for i = 1, 2 be given. Then̄o2 is a refinementof ō1, written ō2 ≺ ō1, iff



110 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

the following holds:
∃ō ⊆ O1 ∩ O2 : ō2 →O2

ō →O1
ō1.

3

We are now ready to introduce our notion of policy refinement.

Definition 15 (Policy Refinement).Let two privacy policiesPol i = (Voci, Ri, dr i)
for i = 1, 2 with compatible vocabularies be given, and setPol∗i = (Voc∗i , Ri, dr i)
for i = 1, 2, whereVoc∗i = (UH 1 ∪ UH2 ,DH 1 ∪ DH 2,PH 1 ∪ PH 2,AH 1 ∪ AH 2,

Var i,OM i). ThenPol2 is a refinementof Pol1, written Pol2 ≺ Pol1, iff for every
assignmentχ ∈ Ass⊆(Var1 ∪ Var2) and every authorization requestq ∈ Req one of
the following statements holds, where(ri, ōi) := evalPol∗

i
(q, χ) for i := 1, 2:

– (r1, ō1) = (r2, ō2) = (conflict error , ∅).
– (r1, ō1) = (scope error , ∅).
– r1 ∈ {+,−} andr2 = r1 and ō2 ≺ ō1.
– r1 = ◦ andr2 ∈ {+, ◦,−} andō2 ≺ ō1.

3

Besides this rather strict notion of refinement, we can also define a notion ofweak
refinement, denoted by≺̃, where the refining policy may be less permissive than the
original policy. The only difference to Definition 15 is that+ is treated like◦ in the
fourth statement instead of like− in the third statement. Weak refinement corresponds
to the intuition that a policyPol1 implements a privacy promise or requirement to use
data at most for certain purposes, so that a refining policyPol2 can only restrict that
usage. However, while weak definition prevents misuse, it does not preserve guaranteed
access rights: For instance,Pol1 may guarantee an individual the right to read her data
while policyPol2 does not. Strong refinement therefore seems the more useful notion
for E-P3P with its 3-valued logic where◦, meaning ‘don’t-care’, is also a valid ruling.
In contrast one might choose weak refinement for a 2-valued policy language with only
the rulings+ and−. We therefore concentrate on strong refinement.

After refinement, we now introduce a notion of equivalence ofpolicies. Similar to
policy refinement, we start with the equivalence of obligations.

Definition 16 (Obligation Equivalence).Let two obligation models(Oi,→Oi
) and

ōi ⊆ Oi for i = 1, 2 be given. Then̄o1 and ō2 are equivalent, written ō1 ≡ ō2, iff
ō1 ≺ ō2 and ō2 ≺ ō1. 3

The relation≡ is clearly symmetric.

Definition 17 (Policy Equivalence).Two privacy policiesPol1 and Pol2 with com-
patible vocabularies areequivalent, written Pol1 ≡ Pol2, iff for every assignment
χ ∈ Ass⊆(Var1 ∪ Var2) and every requestq ∈ Req we have

r1 = r2 andō1 ≡ ō2

for the evaluation results(r1, ō1) := evalPol1
(q, χ) and(r2, ō2) := evalPol2

(q, χ). 3



A Toolkit for Managing Enterprise Privacy Policies 111

Clearly, policy equivalence is a symmetric relation, sinceobligation equivalence is sym-
metric. We can now establish the following theorem.

Theorem 1. Two privacy policiesPol1, Pol2 are equivalent if and only if they are
mutual refinements. Formally,

Pol1 ≡ Pol2 ⇔ Pol1 ≺ Pol2 ∧ Pol2 ≺ Pol1.

2

Proof. Let an assignmentχ ∈ Ass⊆(Var1 ∪ Var2) and an authorization request
q ∈ Req be given. Note thatPol1 ≡ Pol2 implies Req(Voc1) = Req(Voc2), as
otherwise there existsq ∈ Req(Voc1) \ Req(Voc2 ) without loss of generality such
that evalPol2

(q, χ) = (scope error , ∅) 6= evalPol1
(q, χ). Similarly, we can show

that Pol1 ≺ Pol2 ∧ Pol2 ≺ Pol1 implies Req(Voc1) = Req(Voc2), as for q ∈
Req(Voc1)\Req(Voc2 ), we haveevalPol2(q, χ) = (scope error , ∅) 6= evalPol1(q, χ),
which contradictsPol2 ≺ Pol1. Therefore, we havePol i = Pol∗i for i = 1, 2, with
Pol∗i as in Definition 15, i.e., we can consider the evaluation ofPol i instead ofPol∗i to
show refinement. Hence let(ri, ōi) := evalPoli

(q, χ) = evalPol∗
i
(q, χ) for i = 1, 2 be

the corresponding rulings.

“⇒” Since policy equivalence is symmetric, it is sufficient to show thatPol2 refines
Pol1. If (r1, ō1) = (conflict error , ∅) then also(r2, ō2) = (conflict error , ∅)
becausePol1 ≡ Pol2. If (r1, ō1) = (scope error , ∅), nothing has to be shown.
Now let r1 ∈ {+, ◦,−}. Policy equivalence impliesr2 = r1 andō2 ≡ ō1; this is
sufficient for refinement.

“⇐” We distinguish the following cases:
(r1, ō1) = (conflict error , ∅). Then we also have(r2, ō2) = (conflict error , ∅)

sincePol2 refinesPol1. This impliesō1 ≡ ō2.
(r1, ō1) = (scope error , ∅). If r2 6= r1 we immediately obtain thatPol1 is not a

refinement ofPol2. Thusr2 = scope error . This impliesō2 = ∅ and thus
ō2 ≡ ō1.

r1 ∈ {+,−}. Thenr2 = r1 sincePol2 refinesPol1. Further, sincePol1 andPol2
are mutual refinements, we haveō1 ≺ ō2 andō2 ≺ ō1 and thus̄o1 ≡ ō2.

r1 = ◦. Assume for contradiction thatr2 ∈ {+,−, scope error , conflict error}.
In this casePol1 is no refinement ofPol2 any longer. Further, as in the previous
case, we havēo1 ≺ ō2 andō2 ≺ ō1 and thus̄o1 ≡ ō2.

4 Composition of Privacy Policies

In this section, we introduce two notions of composition of E-P3P policies, i.e., the
merging of two somehow compatible policies.

In an enterprise, policies may be defined on multiple levels in a management hierar-
chy. A chief privacy officer (CPO) may define enterprise-widemandatory policy rules



112 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

that implement the applicable privacy laws. In addition, the CPO can define defaults
that apply if a department does not define its own rules. A department can then define
its own privacy policy rules. These rules override the default rules but are overruled by
the mandatory rules of the CPO. In order to allow such distributed authoring and main-
tenance of privacy policies, we now introduce a notion of policy composition. If two
policies are composed, both rule-sets are enforced. By defining that one policy has a
higher precedence than the other, one can define one way to resolve conflicts. For such
precedence shifts and for dealing with default values, we start with the notion of the
normalizationof a policy.

4.1 Policy Normalization

Recall that the default ruling of a policy determines the result if no rule applies for
a given request although the request is in the scope of the policy. When composing
policies, different default rulings must be resolved first.This is simple if the scope is
the same or the default ruling is the same. To resolve the morechallenging cases, we
first convert the default ruling of a policy into a set of normal rules. These new rules
have the default ruling as their ruling, lowest precedence,no obligations and conditions,
and they cover the root elements of all hierarchies.

Definition 18 (Policy with Removed Default Ruling).Let Pol = (Voc, R, dr) be a
privacy policy andi ∈ Z. Then thepolicy with removed default rulingfor Pol wrt. i is
the following policyrmDR(Pol , i):

If dr = ◦, thenrmDR(Pol , i) := Pol .
Else for every hierarchyXH = (H, >H), let roots(XH ) := {x ∈ H | ¬∃x′ ∈

H : x′ >H x}. ThenrmDR(Pol , i) := (Voc, R′, ◦) with R′ := R ∪ DR and

DR := {(i, u, d, p, a, ∅, ∅, dr)
∣

∣ u ∈ roots(UH ) ∧ d ∈ roots(DH )

∧ p ∈ roots(PH ) ∧ a ∈ roots(AH )}.

We abbreviatermDR(Pol) := rmDR(Pol ,min(Pol ) − 1). 3

We now show that a policy with removed default ruling is equivalent to the original
policy if i is smaller than all the precedences in the original policy.

Lemma 1. LetPol = (Voc, R, dr) be a privacy policy andi ∈ Z with i < min(Pol ).
ThenrmDR(Pol , i) ≡ Pol . In particular, this impliesrmDR(Pol ) ≡ Pol . 2

Proof. Let a requestq ∈ Req and an assignmentχ ∈ Ass⊆(Var) be given. SincePol

andrmDR(Pol ) have the same vocabulary, we can show refinement using the evalu-
ation ofPol andrmDR(Pol) instead ofPol∗ andrmDR(Pol)∗ as defined in Defini-
tion 15. Equal vocabularies also imply that either both policies rule(scope error , ∅) or
none of them.

If Pol rules(conflict error , ∅) then so doesrmDR(Pol , i), since the rules inDR

have lower precedence than all rules inR. Furthermore, all rules inDR have iden-
tical ruling; hence they cannot induce a conflict error. Thuseither both policies rule
(conflict error , ∅) or none of them.



A Toolkit for Managing Enterprise Privacy Policies 113

If a ruleρ fromR applies to this request, it applies for both policies, sinceevery rule
of Pol is also contained in the ruleset ofrmDR(Pol , i). Moreover, every rule inDR

has lower priority thanρ by construction. Hence neither a rule inDR nor the default
ruling applies. ThusPol andrmDR(Pol , i) output the same pair(r, ō). Conversely, if
a ruleρ ∈ DR applies, this means that no rule ofR applies, but the request is in scope
of the policy. In this casePol outputs(dr , ōacc), whereōacc is the set of obligations
accumulated while processingR. The policyrmDR(Pol , i) applies the ruleρ, which
also yields(dr , ōacc) since no obligation is added by any rule inDR.

Next, we introduce an operation for changing the precedenceof the rules of a policy,
e.g., to overcome possible conflicts when merging the policywith another one. As a
collective change for all rules seems useful, we define a precedence shift, which adds
a fixed number to the precedence of all rules in a policy. This is particularly useful for
the example at the beginning of this section, where the department policy can be shifted
downwards to have lower precedences than the policy of the CPO.

Definition 19 (Precedence Shift).Let Pol = (Voc, R, dr) be a privacy policy and
j ∈ Z. ThenPol + j := (Voc, R + j, dr ) with R + j := {(i + j, u, d, p, a, c, ō, r) |
(i, u, d, p, a, c, ō, r) ∈ R} is called theprecedence shiftof Pol by j. We definePol −
j := Pol + (−j). 3

Lemma 2. A privacy policyPol is equivalent toPol + j for all j ∈ Z. 2

Proof. By Theorem 1, it is sufficient to show thatPol refinesPol + j for all j ∈ Z.
Let j, a requestq ∈ Req, and an assignmentχ ∈ Ass⊆(Var) be given. By con-

struction, the rules that apply to this request inPol andPol + j can only differ in their
precedence. Furthermore, if a rule applies inPol , it also applies after the precedence
shift, since the precedence ofall rules inPol + j has been shifted similarly. Applying
the same rule in both policies in particular yields the same set of obligations. Hence
Pol refinesPol + j.

We now define the normalization of a policy. This correspondsto a precedence shift
yielding a default ruling of precedence0. Normalized policies are used in the definition
of the ordered composition of two policies defined below.

Definition 20 (Normalized Policy).LetPol be a privacy policy. Thennorm0(Pol ) :=
rmDR(Pol − min(Pol ) + 1, 0) is called thenormalized policyfor Pol . 3

Lemma 3. For every privacy policyPol , we havenorm0(Pol ) ≡ Pol . 2

Proof. By definition, the precedence of all rules innorm0(Pol) is greater than0. Hence
the claim follows from Lemmas 1 and 2.



114 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

4.2 Definition of Composition

We now have the tools ready to turn our attention to policy composition. The simplest
case of merging two policies with compatible vocabularies is to compute the union of
the two rule sets. This direct composition assumes that the precedences used in both
policies have a common meaning. However, translating the default ruling of a policy is
tricky: If elements are in the scope of only one policy, the default ruling of this policy
should apply. If elements are covered by both policies, a conflict between the two default
rulings needs to be resolved.

Definition 21 (Direct Composition). Let Pol1 and Pol2 be two privacy policies
with compatible vocabularies. Letm := min{min(Pol1),min(Pol2)} andPol ′i :=
(Voci, R

′
i, ◦) := rmDR(Pol i, m) for i = 1, 2. Then

Pol1
⋃

Pol2 := (Voc1 ∪ Voc2, R
′
1
∪ R′

2
, ◦)

is called thedirect compositionof Pol1 andPol2. 3

In our second type of composition, the rules of one policy, herePol2 should be applied
preferably. Hence the rules of the other policy are downgraded using a precedence shift.
This also applies to the default ruling of the preferred policy, i.e., the downgraded policy
is only used where it extends the scope of the preferred policy, or if no rule of the
preferred policy applies and the default ruling is◦.

Definition 22 (Ordered Composition). Let Pol1 and Pol2 be two privacy policies
with compatible vocabularies. Let(Voc1, R

′′
1
, ◦) := rmDR(Pol1 − max (Pol1) − 1),

and(Voc2, R
′
2, ◦) := norm0(Pol2). Then

Pol1 <

⋃

Pol2 := (Voc1 ∪ Voc2, R
′′
1 ∪ R′

2, ◦)

is called theordered compositionof Pol1 underPol2. 3

By the intuitive introduction to ordered compositions, an ordered composition should
serve as a refinement ofPol2. This is captured in the following lemma.

Lemma 4. For all privacy policiesPol1 andPol2 with compatible vocabularies, we
havePol1 <

⋃

Pol2 ≺ Pol2. 2

Proof. Let Pol i =: (Voci, Ri, dr i) for i := 1, 2, and we use all notation from Defi-
nition 22. Let a requestq = (u, d, p, a) and an assignmentχ ∈ Ass⊆(Var1 ∪ Var2)
be given. LetPol∗

2
and(Pol1 <

⋃

Pol2)
∗ be defined according to Definition 15. Note

further that(Pol1 <
⋃

Pol2)
∗ = Pol1 <

⋃

Pol2 since their vocabularies are equal. We
distinguish four cases:

1. Pol∗
2

rules (conflict error , ∅): In this case, two rules of the same precedencei

collided in Pol∗
2
. Sincei is larger than the precedence of any rule ofR′′

1
by the

shifts, we also get a conflict inPol1 <
⋃

Pol2, and an output(conflict error , ∅).
2. Pol∗

2
rules(scope error , ∅): Nothing has to be shown for this case.



A Toolkit for Managing Enterprise Privacy Policies 115

3. Pol∗
2

rules(r2, ō2) with r2 6= ◦: This means that a rule(i2, u, d, p, a, c2, ō2, r2)
from R′

2
is applicable. Because ofr2 6= ◦ the evaluation function will stop at the

precedence leveli2. Since the precedences ofR′′
1 are always less then zero by con-

struction whereasi2 ≥ 0 by normalization, the same rules applies inPol1 <
⋃

Pol2
and we obtain identical outputs, i.e.,Pol1 <

⋃

Pol2 also rules(r2, ō2). Note that sev-
eral rules might have already occurred that added obligations only. However, they
occur in bothPol∗

2
andPol1 <

⋃

Pol2 and hence do not cause any harm.
4. No rule ofR′

2 fits the current request, but the request is in the scope ofPol∗2. In
this case, the (expanded) default ruling ofPol2 applies for bothPol1 <

⋃

Pol2 and
Pol∗2, since this ruling has higher precedence than any rule inR′′

1 . If dr2 6= ◦,
both policies rule(◦, ō2) for some obligation set̄o2, which is again equal for both
policies since they processed the same set of rules so far. Ifdr2 = ◦ then the
evaluation function starts searching for matching rules inR′′

1 . HerePol∗2 outputs
(◦, ō2), whereasPol1 <

⋃

Pol2 outputs(r, ō2∪ ō1) for somer andō1 ⊆ O1. In order
to prove refinement, we obtain̄o1∪ō2 →O2

ō2 because of̄o2 ⊆ ō1∪ō2. This further
implies ō1 ∪ ō2 →O1∪O2

ō2. Because of̄o2 →O2
ō2 we obtainō1 ∪ ō2 →O1∪O2

ō2 →O2
ō2, which proves refinement sincēo2 ∈ O2 = (O1 ∪ O2) ∩ O2.

The composition operators fulfill certain laws:

Lemma 5 (Laws for Policy Composition).Direct composition is commutative and
ordered composition is associative, i.e., for all privacy policiesPol i for i = 1, 2, 3 with
pairwise compatible vocabularies, we have

Pol1
⋃

Pol2 ≡ Pol2
⋃

Pol1;

(

Pol1 <

⋃

Pol2

)

<

⋃

Pol3 ≡ Pol1 <

⋃

(

Pol2 <

⋃

Pol3

)

.

2

Proof. (Sketch) The commutativity part is obvious. We now show the associativity part.
The composition of vocabularies is associative. For the rulesets,(Pol1 <

⋃

Pol2) <
⋃

Pol3
yields a ruleset where0 is the lowest precedence ofPol3 and higher than the highest
precedence ofPol2, whilePol1 <

⋃

(Pol2 <
⋃

Pol3) yields a ruleset where0 is the lowest
precedence ofPol2 and higher than the highest precedence ofPol1. By shifting the
second ruleset bymax (Pol2 )−min(Pol2)+1 one obtains a ruleset that is identical, and
thus clearly equivalent, to the first set. Since this precedence shift retains equivalence,
the second ruleset is equivalent to the first ruleset.

5 Two-Layered Privacy Policies

An enterprise must abide by the law. In addition, the consentthat an individual has
granted when submitting data to an enterprise is mandatory and should not be changed.



116 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

In contrast, unregulated and non-promised issues can be freely decided by the enter-
prise, i.e., enterprise privacy practices can be changed bythe CPO or the administrators
of the enterprise. In order to reflect this requirement, we now introduce a distinction be-
tween mandatory and discretionary parts of a policy. This represents a modal view of a
policy semantics [18]: The mandatory partmustbe adhered to under any circumstances,
the remaining partmaybe adhered to. We capture this view by introducingtwo-layered
policies.

The real value of this notion lies in new possibilities for composition that cannot
be captured by just taking the ordered composition of the discretionary part under the
mandatory part.

5.1 Syntax and Semantics of Two-Layered Privacy Policies

Syntactically, a two-layered policy is simply a pair of (usual) privacy policies. The first
element is the mandatory part and the second element the discretionary part.

Definition 23. A pair Pol = (Pol1,Pol2) of privacy policies with compatible vocab-
ularies is called atwo-layered policy. The policyPol1 is called themandatory partof
Pol , andPol2 thediscretionary part. 3

The semantics of such a two-layered policy is described as analgorithm, given an au-
thorization requestq ∈ Req and an assignmentχ ∈ Ass⊆(Var1 ∪ Var2):

– Evaluate mandatory policy.Evaluate the requestq underPol1, yielding(r1, ō1).
– First policy dominates.If r1 6∈ {◦, scope error}, output(r1, ō1).
– Evaluate second policy.If r1 ∈ {◦, scope error}, evaluate the requestq under

Pol2, yielding (r2, ō2). If r2 = scope error and r1 = ◦, output(r1, ō1), else
output(r2, ō1 ∪ ō2).

This captures the intuition thatPol1 is mandatory: Only ifPol1 does not care about
a request, or if it does not capture the request, the discretionary partPol2 is executed.
Note that the mandatory part can still be used to accumulate obligations, e.g., for strictly
requiring that every employee has to send a notification to his or her manager before a
specific action.

We now show that the resulting semantics is the same as that ofordered composi-
tion, as one would expect. Recall, however, that the composition operators make use of
the fact that a two-layered policy retains the information which parts were mandatory.

Lemma 6. For Pol := (Pol1,Pol2), the two-layered semantics is equivalent to the
ordinary semantics of an ordered composition:Pol ≡ Pol2 <

⋃

Pol1. 2

Proof. We have to show that evaluation ofPol andPolC := Pol2 <
⋃

Pol1 always re-
turn the same ruling and equivalent obligations. . Let us first assume that the evaluation
of Pol outputs(r1, ō1) with r1 ∈ {+,−} (first policy dominates), i.e., the request was
in the scope ofPol1 and produced a ruling+ or−. Hence when evaluatingPolC , only
higher precedence rules ofPol1 are used andPolC also outputs(r1, ō1).

Let us now assume thatr1 = scope error in Pol . Then the result is determined by
Pol2. The same holds forPolC .



A Toolkit for Managing Enterprise Privacy Policies 117

Let us finally assume that(r1, ō1) was output byPol1 with r1 = ◦. If the request is
in the scope ofPol2, thenPol andPolC will output the ruling ofPol2 with a union of
both obligations. If the request is out of the scope ofPol2, the pair(r1, ō1) is output in
both cases.

This lemma and Lemma 4 imply that(Pol1,Pol2) ≺ Pol1, i.e., that every two-layered
policy refines its mandatory part.

5.2 Refinement and Composition of Two-Layered Policies

For two-layered privacy policies, we define the following notion of refinement.

Definition 24 (Two-Layered Refinement). Let two-layered policiesPol =
(Pol1,Pol2) and Q = (Q1, Q2) be given wherePol1 and Q1 as well asPol2 and
Q2 have compatible vocabularies. ThenPol is a refinementof Q, writtenPol ≺ Q, iff
Pol1 ≺ Q1 andPol2 ≺̃ Q2. 3

The distinction between mandatory and discretionary partsenabled us to use the notion
of weak refinement: We require that the mandatory part is a normal refinement. This re-
flects that access rights as well as denials must be preserved. The discretionary part may
be weakly refined. This reflects the fact that this part can be modified at the discretion
of the enterprise.

Coming up with a meaningful definition of composing two-layered policies is more
difficult. The main goal is to never violate any mandatory part. Composing the manda-
tory parts either according to Definition 21 or 22 would typically overrule some manda-
tory rules, which would defeat this goal. Therefore, we onlyallow to compose two-
layered policies if the rulesets of their respective mandatory parts arecollision-free,
which means that for all requests and all assignments, it is never the case that one
mandatory part accepts the request (i.e., it rules+), whereas the other one denies the
request (i.e., it rules−).

Definition 25 (Collision-Free).Two privacy policiesPol1 andPol2 with compatible
condition vocabularies are calledcollision-free if for all requestsq ∈ Req and all
assignmentsχ ∈ Ass⊆(Var1 ∪ Var2) the following holds: IfPol i rules (ri, ōi) for
i = 1, 2, then{r1, r2} 6= {+,−}. 3

Two-layered policies with conflicting mandatory parts cannot be composed. For two-
layered policies with collision-free mandatory parts, we define composition as follows:

Definition 26 (Two-Layered Composition). Let two-layered policiesPol =
(Pol1,Pol2) andQ = (Q1, Q2) be given wherePol1 andQ1 as well asPol2 andQ2

have compatible vocabularies, andPol1 andQ1 are collision-free. Then thecomposi-
tion of Pol andQ is defined asPol

⋃

Q := (Pol1
⋃

Q1,Pol2
⋃

Q2). Similarly, theor-
dered compositionof Pol underQ is defined asPol <

⋃

Q := (Pol1 <
⋃

Q1,Pol2 <
⋃

Q2).
3

The following lemma shows the main property that this composition wants to preserve,
i.e., that the resulting composed policy refines both mandatory parts.



118 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

Lemma 7. Let two-layered policiesPol = (Pol1,Pol2) andQ = (Q1, Q2) be given
such thatPol1 andQ1 as well asPol2 andQ2 have compatible vocabularies. More-
over,Pol1 andQ1 are collision-free. ThenPol <

⋃

Q is a refinement ofQ . Furthermore,
PolC := Pol <

⋃

Q is a refinement ofPol1 andQ1. 2

Proof. The first claim follows directly from Lemma 4. Lemma 6 impliesthatPolC ≡
(Pol2 <

⋃

Q2) <
⋃

(Pol1 <
⋃

Q1). The fact thatPolC is a refinement ofQ1 follows from
Lemma 4.

Let us now assume thatPolC does not refinePol1. SincePolC refines(Pol1 <
⋃

Q1), this implies that(Pol1 <
⋃

Q1) does not refinePol1. This implies that there exists
a request within the scope ofPol1 andQ1 such thatQ1 does not rule◦ since otherwise
the ruling ofPol1 would be output. For this request, the rulings ofPol1 andQ1 differ,
which contradicts our assumption thatPol1 andQ1 are collision-free.

6 Conclusion

Privacy policies are a core component for enterprise privacy technologies. The current
proposals for privacy policies required policy authors to create one single overall policy
for the complete enterprise(s) that are covered. We therefore described a toolkit to han-
dle multiple policies. This includes refinement for auditing and policy validation and
composition for multi-domain or delegated-authorship policies. In addition, we intro-
duced a new notion of two-layered policies to track mandatory and discretionary parts.
This enables privacy administrators to detect and resolve conflicts between mandatory
policies, e.g., if a customer promise or another contract would violate a law. These
tools enable the privacy officers of an enterprise to create and manage the complex pri-
vacy policy of an enterprise more efficiently while retaining the semantic rigor that is
required for trustworthy privacy management.

Acknowledgments

We thank Günter Karjoth, Calvin Powers, and Michael Waidner for valuable discus-
sions.

References

1. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter.Enterprise Privacy Authorization
Language (EPAL). Research Report 3485, IBM Research, 2003.http://www.zurich.
ibm.com/security/enterprise-privacy/epal/specification.

2. P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P privacy policies and privacy autho-
rization. InProc. 1st ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–109, 2002.

3. A. Belokosztolszki and K. Moody. Meta-policies for distributed role-based access control
systems. InProc. 3rd IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY), pages 106–115, 2002.



A Toolkit for Managing Enterprise Privacy Policies 119

4. C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekerat. Obligation monitoring in policy
management. InProc. 3rd IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY), pages 2–12, 2002.

5. P. A. Bonatti, E. Damiani, S. De Capitani di Vimercati, andP. Samarati. A component-
based architecture for secure data publication. InProc. 17th Annual Computer Security
Applications Conference, pages 309–318, 2001.

6. P. A. Bonatti, S. De Capitani di Vimercati, and P. Samarati. A modular approach to compos-
ing access control policies. InProc. 7th ACM Conference on Computer and Communications
Security, pages 164–173, 2000.

7. P. A. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for composing access
control policies.ACM Transactions on Information and System Security, 5(1):1–35, 2002.

8. A. Cavoukian and T. J. Hamilton.The Privacy Payoff: How successful businesses build
customer trust. McGraw-Hill/Ryerson, 2002.

9. S. De Capitani di Vimercati and P. Samarati. An authorization model for federated systems.
In Proc. 4th European Symposium on Research in Computer Security (ESORICS), volume
1146 ofLecture Notes in Computer Science, pages 99–117. Springer, 1996.

10. S. Fischer-Hübner.IT-security and privacy: Design and use of privacy-enhancing security
mechanisms, volume 1958 ofLecture Notes in Computer Science. Springer, 2002.

11. Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C.Xu. IPSec/VPN security
policy: Correctness, conflict detection and resolution. InProc. 2nd IEEE International Work-
shop on Policies for Distributed Systems and Networks (POLICY), volume 1995 ofLecture
Notes in Computer Science, pages 39–56. Springer, 2001.

12. V. Gligor, H. Khurana, R. Koleva, V. Bharadwaj, and J. Baras. On the negotiation of access
control policies. InProc. 9th International Workshop on Security Protocols, 2002.

13. H. Hosmer. The multipolicy paradigm. InProc. 15th National Computer Security Confer-
ence, pages 409–422, 1993.

14. S. Jajodia, M. Kudo, and V. S. Subrahmanian. Provisionalauthorization. InProc. E-
commerce Security and Privacy, pages 133–159. Kluwer Academic Publishers, 2001.

15. S. Jajodia, P. Samarati, M. L. Sapino, and V. Subrahmanian. Flexible support for multiple
access control policies.ACM Transactions on Database Systems, 26(4):216–260, 2001.

16. G. Karjoth and M. Schunter. A privacy policy model for enterprises. InProc. 15th IEEE
Computer Security Foundations Workshop (CSFW), pages 271–281, 2002.

17. G. Karjoth, M. Schunter, and M. Waidner. The platform forenterprise privacy practices –
privacy-enabled management of customer data. InProc. Privacy Enhancing Technologies
Conference, volume 2482 ofLecture Notes in Computer Science, pages 69–84. Springer,
2002.

18. J. D. Moffett and M. S. Sloman. Policy hierarchies for distributed systems management.
IEEE JSAC Special Issue on Network Management, 11(9):1404–31414, 1993.

19. Platform for Privacy Preferences (P3P). W3C Recommendation, Apr. 2002.http://www.
w3.org/TR/2002/REC-P3P-20020416/.

20. C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An access control language for
security policies with complex constraints. InProc. Network and Distributed System Security
Symposium (NDSS), 2001.

21. TRUSTe. Privacy Certification. Available atwww.truste.com.
22. eXtensible Access Control Markup Language (XACML). OASIS Committee Specification

1.0, Dec. 2002.www.oasis-open.org/committees/xacml.


