
Efficient Comparison of Enterprise Privacy Policies

Michael Backes, Walid Bagga, G̈unter Karjoth, Matthias Schunter
IBM Research, Zurich Research Laboratory,

Säumerstrasse 4, 8803 Rüschlikon, Switzerland

September 16, 2003

Abstract

Enterprise privacy policies often reflect different legal regulations, promises made to customers, as well as more
restrictive internal practices of the enterprise. The notion of policy refinement is fundamental for privacy policies,
as it allows to check whether a company’s policy fulfills regulations or adheres to standards set by customer or-
ganizations, to realize the “sticky policy paradigm” that addresses transferring data from one realm to another in
a privacy-preserving way, and much more. Although well-established in theory, the problem of how to efficiently
check whether one policy refines another has been left open in the privacy policy literature. We present a practical
algorithm for this task, concentrating on those aspects that make refinement of privacy policies more difficult than,
e.g., refinement for access control policies, like a more sophisticated treatment of deny-rules and a suitable way for
dealing with obligations and conditions on context information.

1 Introduction

An increasing number of enterprises make privacy promises to customers or, at least in the US and Canada, fall
under new privacy regulations. To ensure adherence to these promises and regulations, enterprise privacy technologies
are emerging [6]. An important tool for enterprise privacy enforcement is formalized enterprise privacy policies
[3, 8, 10, 11]. An enterprise privacy policy often reflects different legal regulations, promises made to customers, as
well as more restrictive internal practices of the enterprise. Further, it may allow customer preferences. Compared
with the well-known language P3P [12] intended for privacy promises to customers, languages for the internal privacy
practices of enterprises and for technical privacy enforcement must offer more possibilities for fine-grained distinction
of users, purposes, etc., as well as a clearer semantics.

The notion of policy refinement is fundamental for many situations in privacy policy management. Intuitively,
one policy refines another if using the first policy automatically also fulfills the second policy. For instance, policy
refinement enables verification that an enterprise policy fulfills regulations or adheres to standards set by consumer
organizations or a self-regulatory body, assuming only that these coarser requirements are once and for all also for-
malized as a privacy policy. Similarly, it enables verification that a detailed policy for a part of the enterprise (defined
by responsibility or by technology) refines the overall privacy policy set by the company’s CPO. The verification can
be done in the enterprise or by external auditors, such as [14].

Sticky policies [11] are another application of policy refinement: With increasingly dynamic e-business, data
will be exchanged between enterprises, and enterprise boundaries change due to mergers, acquisitions, or virtual
enterprises. After transferring data from the realm of one policy into another (where the transfer must of course be
permitted by the first policy), the second realm must enforce the first policy. However, the enforcement mechanisms
(both organizational and technical) in the second realm will often not be able to deal with arbitrary policies for each
obtained set of data. In this case, one realm must perform a refinement test before the data are transferred, i.e., one
has to verify that the policy of the second realm refines the policy of the first, at least for the restriction of the first
policy to the data types being transferred. This requires compatible enterprise privacy enforcement mechanisms. For
these reasons, IBM has recently proposed an Enterprise Privacy Authorization Language (EPAL) [1] as an XML
specification for public comments and possible subsequent input to standardization.

Although refinement of privacy policies is well-established in theory [3], an efficient algorithmic solution for
checking if one policy refines another has not been addressed yet. Coming up with such a solution is challenging

1



for three crucial reasons: First, compared to typical access control policies, privacy policies additionally offer a more
sophisticated semantics for requests to abstract elements, e.g., an abstract user “department” that is used to group a
set of concrete “employees”. Requests to such abstract elements are interpreted in an access control manner, i.e., if
the department has at least one employee that is not allowed to perform a specific action, then so is the department as
an abstract user. In the representation of the semantics of privacy policies, this formally means that deny-rules have
to be inherited upwards the hierarchies. Secondly, obligations as well as conditions on context information have to be
taken into account, which are essential features in enterprise privacy policies. Thirdly, a one-to-one adoption of the
definition of policy refinement requires to compare each element of the first policy with each element of the second
one. Since rules usually overlap for a large number of such elements, an efficient algorithm ought to identify these
elements and compared them as a whole.

The goal of this article is therefore to provide an efficient algorithm for checking refinement of privacy policies in
an enterprise. We do this concretely for the IBM EPAL proposal. However, for a scientific paper we cannot use the
lengthy XML syntax, but have to use a corresponding abstract syntax, which closely resembles the one presented in
[3] (which, like EPAL, is based on [11]).

Further related literature. The core contribution of new privacy-policy languages [8, 10, 11], compared with other
access-control languages, is the notion of purpose and purpose-bound collection of data, which is essential to privacy
legislation. Other necessary features that prevent enterprises from simply using their existing access-control systems
are obligations and conditions on context information. Individually, these features were also considered in recent
literature on access control, e.g., purpose hierarchies in [5], obligations in [4, 7, 9, 13], and conditions on context
information in [15]. Refinement is a well-established concept to support the incremental specification of security
policies, authorization policies [5], and management policies [7]. Whilst significant work has been done in developing
policy refinement techniques, the area of (privacy) policy refinement checking has been barely addressed.

2 Syntax, Semantics, and Refinement of EPAL Policies

In this section, we review the abstract syntax and semantics of IBM’s EPAL privacy policy language [1], which closely
resembles a recently proposed abstract syntax and semantics for the superset of E-P3P Enterprise Privacy Policies
in [3]. The main differences are that EPAL does not use rules with priorities as considered in [3] but the simpler
representation as an ordered list of rules, and that EPAL policies are additionally equipped with a global condition that
has to be satisfied in order to further process a request, as well as with a default obligation.

2.1 Hierarchies, Obligations, and Conditions

For conveniently specifying rules, the data, users, etc. are categorized in EPAL as in many access-control languages.
This also applies to the purposes. To allow structured rules with exceptions, categories are ordered in hierarchies;
mathematically they are forests, i.e., multiple trees. For instance a user “company” may group several “departments”,
each containing several “employees”. The enterprise can then write rules for the whole “company” with exceptions
for some “departments”.

Definition 2.1 (Hierarchy) A hierarchyis pair (H,>H) of a finite setH and a transitive, non-reflexive relation
>H ⊆ H × H, where everyh ∈ H has at most one immediate predecessor (parent). As usual we write≥H for the
reflexive closure. We writeh ≷H h′ if h ≥H h′ or h′ ≥H h holds.

For two hierarchies(H,>H) and(G,>G), we define

(H,>H) ⊆ (G,>G) :⇔ (H ⊆ G) ∧ (>H ⊆ >G);
(H,>H) ∪ (G,>G) := (H ∪G, (>H ∪ >G)∗);

where∗ denotes the transitive closure. Note that a hierarchy union is not always a hierarchy again. 3

Throughout this paper we often speak of hierarchies as forests, i.e., as set of trees.
EPAL policies can impose obligations, i.e., duties for the enterprise. Examples are to send a notification to the data

subject after each emergency access to medical data, or to delete data after a given time. Obligations are not structured

2



in hierarchies, but by an implication relation. As multiple obligations may imply more than each one individually, we
define the implication (which must also be realized in the application domain) on these sets. We also define how this
relation interacts with vocabulary extensions.

Definition 2.2 (Obligation Model) Anobligation modelis a pair (O,→O) of a setO and a relation→O ⊆ P(O)×
P(O), spokenimplies, on the powerset ofO, whereō1 →O ō2 for all ō2 ⊆ ō1, i.e., fulfilling a set of obligations
implies fulfilling all sub-sets.

For O′ ⊃ P(O), we extend the implication toO′ ×P(O) by ((ō1 →O ō2) :⇔ (ō1 ∩P(O)→O ō2)). 3

The decision formalized by a privacy policy can depend on context data. Examples are a person’s age or opt-in
consent. In EPAL, this is represented by conditions over data in so-called containers [1]. The XML representation
of the formulas is taken from [15], which corresponds to a predicate logic without quantifiers. Similar to [3], we
formalize the containers as a set of variables with domains, and the conditions as formulas over these variables.

Definition 2.3 (Condition Vocabulary) A condition vocabularyis a pair Var = (V,Scope) of a finite setV and a
function assigning everyx ∈ V , called avariable, a setScope(x), called itsscope.

Two condition vocabulariesVar1 = (V1,Scope1), Var2 = (V2,Scope2) are compatible if Scope1(x) =
Scope2(x) for all x ∈ V1 ∩ V2. For that case, we define theirunionby Var1 ∪Var2 := (V1 ∪ V2,Scope1 ∪ Scope2).
3

In this paper, we will not extend this to a full signature in the sense of logic, i.e., including predicate and function
symbols, but we assume a given universe of predicates and functions with fixed domains and semantics. For a condition
vocabularyVar = (V,Scope) and for the assume universe of predicates and functions, we letC(Var) denote the set
of correctly typed formulas overV . Furthermore, letAss(Var denote the set of all assignments for the setV into
the respective scopes, and forχ ∈ Ass(Var), let evalχ : C(Var) → {true, false} denote the evaluation function for
conditions given this variable assignment. This is defined by the underlying logic and the assumption that all predicate
and function symbols come with a fixed semantics.

For an efficient algorithmic solution of policy refinement, we will see that it turns out to be crucial to check
whether one conditionc1 satisfies another onec2, i.e., whetherevalχ(c1) = true impliesevalχ(c2) = true for every
assignmentχ. However, since this problem is NP-complete in the number of variables of the considered condition
vocabulary, we cannot expect to solve this for all instances. For practical purposes, one therefore restricts its attention
to a satisfy relationwhich is at leastcorrect, i.e., if c1 andc2 are contained in the relation thenevalχ(c1) = true
impliesevalχ(c2) = true.

Definition 2.4 (Satisfy Relation) Let Var be a condition vocabulary. Asatisfy relationfor Var is a relation⇒Var⊆
C(Var)×C(Var). The relation iscorrectif for any c1, c2 ∈ C(Var), we have(c1, c2) ∈⇒Var only if (evalχ(c1) =
true)⇒ (evalχ(c2) = true) for all χ ∈ Ass(Var). If the converse direction holds, we call the relationcomplete. In
the following, we use infix notation for the relation⇒Var and we omit the subscriptVar if it is clear from the context.
3

For practical purposes, a suitable satisfy relation which is correct but not necessarily complete can often be constructed
by means of symbolic evaluation.

2.2 Syntax of EPAL Policies

An EPAL policy consists of a vocabulary, a list of authorization rules, a global condition, and a default ruling. The
vocabulary defines element hierarchies for data, purposes, users, and actions, as well as the obligation model and the
condition vocabulary. Data, users and actions are as in most access control policies, and purposes are an important
additional hierarchy for the purpose binding of collected data.

Definition 2.5 (Vocabulary) A vocabularyis a tupleVoc = (UH ,DH ,PH ,AH ,Var ,OM ) whereUH , DH , PH ,
andAH are hierarchies called user, data, purpose, and action hierarchy, respectively,Var is a condition vocabulary,
andOM an obligation model. 3

3



As a naming convention, we assume that the components of a vocabulary calledVoc are always called as in Def-
inition 2.5 with UH = (U,>U ), DH = (D,>D), PH = (P,>P ), AH = (A,>A), Var = (V,Scope), and
OM = (O,→O), except if explicitly stated otherwise. In a vocabulary calledVoci all components also get a subscript
i, and similarly for superscripts.

The list of authorization rules, shortrule list, contains rules that allow or deny operations. A rule basically consists
of one element from each of the considered hierarchies, a ruling, a condition, and an obligation.

Definition 2.6 (Rule-List and Privacy Policy) A rule-list for a vocabularyVoc is a list containing elements of
U × D × P × A × {+, ◦,−} × C(Var) × P(O). For ease of handling, we write a rule(u, d, p, a, r, c, ō) as
〈(u, d, p, a), (r, c, ō)〉 and we call(u, d, p, a) the scope and(r, c, ō) thequalifierof the rule.

A privacy policyor EPAL policy is a tuple(Voc, R, gc, dr , d̄o) of a vocabularyVoc, a rule-listR for Voc, a
global conditiongc ∈ C(Var), a default rulingdr ∈ {+, ◦,−}, and a default obligation̄do ∈ P(O). The set of these
policies is calledEPAL, and the subset for a given vocabularyEPAL(Voc). 3

In EPAL, precedences are contained implicitly by the textual order of the rules. The rulings+, ◦, and−mean ‘allow’,
‘don’t care’, and ‘deny’. The ruling◦ was not yet present in [2]. In EPAL, it is called ‘obligate’ because it enables
rules that do not make a decision but only impose additional obligations. An example is the rule “Whenever someone
tries to access my data, I want to receive a notification”.

As a naming convention, we assume that the components of a privacy policy calledPol are always called as in
Definition 2.6, and ifPol has a sub- or superscript, then so do the components.

2.3 Semantics of EPAL Policies

A request is a tuple(u, d, p, a), which should belong to the setU×D×P×A for the given vocabulary. Note that EPAL
requests are not restricted to “ground terms” as in some other languages, i.e., minimal elements in the hierarchies. This
is useful if one starts with coarse policies and refines them because elements that are initially minimal may later get
children. For instance, the individual users in a “department” of an “enterprise” may not be mentioned in the CPO’s
privacy policy, but in the department privacy policy. For similar reasons, the semantics is also defined for requests
outside the given vocabulary.

Definition 2.7 (Request)For a vocabularyVoc, Req(Voc) := U ×D × P ×A is the set ofvalid requests. 3

Whether a rule with a satisfied condition matches a given request depends on its ruling. We say that a rule is negative
if it has a ‘deny’ ruling, otherwise it is positive. A positive rule matches for a parent of the request (in all hierarchies)
including the request itself, i.e., these rules are inherited downward the hierarchies. If the ruling is ‘deny’, then the
rule also matches if it is specified for a child of the request, i.e., these rules are additionally inherited upward the
hierarchies. The reason is that the hierarchies are considered groupings; if access is forbidden to an element of a
group, it is also forbidden for the group as a whole.

Definition 2.8 (Matching rule) Let (u, d, p, a)2(u′, d′, p′, a′) iff u2u′ ∧ d2d′ ∧ p2p′ ∧ a2a′ for 2 ∈ {≥,≷}.
A positive (negative) rule〈(u, d, p, a), (r, c, ō)〉 matches a request(u′, d′, p′, a′) iff (u, d, p, a) ≥ (u′, d′, p′, a′)
((u, d, p, a) ≷ (u′, d′, p′, a′)). 3

The semantics of a privacy policyPol is a functionevalPol , given in Algorithm 1, that evaluates a request based on a
given assignment and returns the result(r, ō) of a ruling (decision) and associated obligations.

4



Input: A policy P = (Voc,R, gc, dr , d̄o), requestreq = (uR, dR, pR, aR) and assignmentχ ∈ Ass(Var)
Output: evalPol(P , req) ∈ {(scope error , ∅), (policy error , ∅)} ∪ {+, ◦,−} ×O
if (uR, dR, pR, aR) /∈ U ×D × P ×A then return(scope error , ∅)
if evalχ(gc) = false then return(policy error , ∅)
ōadd := ∅
foreach 〈(u, d, p, a), (r, c, ō)〉 ∈ R do

if evalχ(c) = true then
if r = + ∧ (u, d , p, a) ≥ (uR, dR, pR, aR) then return (r , ō ∪ ōadd)
if r = − ∧ (u, d , p, a) ≷ (uR, dR, pR, aR) then return (r , ō ∪ ōadd)
if r = ◦ ∧ (u, d , p, a) ≥ (uR, dR, pR, aR) then ōadd = ōadd ∪ ō

return (dr , ōadd ∪ d̄o)

Algorithm 1: Request Evaluation

If the request is not valid for the considered vocabulary or the global condition is satisfied under the given assign-
ment then the result is(scope error , ∅) or (policy error , ∅), respectively. Otherwise, the output ruling is determined
by the first matching rule with ‘allow’ or ‘deny’ ruling and whose condition is satisfied. If no such rule exists, the
default ruling applies. The obligations of preceding obligate rules are added to the result.

2.4 Refinement of Privacy Policies

We finally review the notion of refinement for EPAL policies, which is the foundation of almost all operations on
policies.

Our notion of refinement allows policyPol2 to define a ruling ifPol1 does not care. Additionally, it is allowed
to extend the scope of the original policy and to define arbitrary rules for the new elements. In all other cases, the
rulings of both policies must be identical. This also comprises the rulingconflict error . For new elements however,
we have to capture that if they are appended to the existing hierarchies, there could exist applicable rules for these
elements if they were already present, and newly added rules for these elements could influence existing elements
as well. As an example, a rule for a “department” may forbid its “employees” to access certain data for marketing
purposes. Now if a new employee is added, this rule should as well be applicable; furthermore, defining a new rule
for this case with higher precedence, e.g., granting the new employee an exception to the department’s rule should
obviously not yield a refinement any more. In our definition of refinement, we therefore do not evaluate each policy
on its own vocabulary but on the joint vocabulary of both policies. One technicality that has to be taken care of is
that joining two vocabularies, i.e., joining their respective hierarchies, might not yield another vocabulary. Hence, we
only define refinement for policies with compatible vocabularies, i.e., those policies for which joining their respective
vocabularies pair-wise gives another hierarchy again.

Dealing with the respective obligations is somewhat more difficult. Intuitively, one wants to express that a finer
policy may also contain refined obligations. However, since a refined policy might contain additional obligations,
whereas some others have been omitted, it is not possible to simply compare these obligations in the obligation model
of the original policy. (Recall that we also use refinement to compare arbitrary policies; hence one cannot simply
expect that all vocabulary parts of the refined policy are supersets of those of the coarser policy.) The following notion
of obligation refinement if from [3].

Definition 2.9 (Obligation Refinement) Let two obligation models(Oi,→Oi) and ōi ⊆ Oi for i = 1, 2 be given.
Thenō2 is a refinementof ō1, written ō2 ≺ ō1, iff the following holds:

∃ō ⊆ O1 ∩O2 : ō2 →O2 ō→O1 ō1.

3

We are now ready to introduce our notion of policy refinement.

Definition 2.10 (Policy Refinement)Let two privacy policiesPol i = (Voci, Ri, gci, dr i, d̄oi) for i = 1, 2 with
compatible vocabularies be given, and setPol∗i = (Voc∗i , Ri, gci, dr i, d̄oi) for i = 1, 2, whereVoc∗i = (UH 1 ∪

5



UH2 ,DH 1∪DH 2,PH 1∪PH 2,AH 1∪AH 2,Var i,OM i). ThenPol2 is arefinementof Pol1, writtenPol2 ≺ Pol1,
iff for every assignmentχ ∈ Ass(Var1 ∪ Var2) and every authorization requestq ∈ Req one of the following
statements holds, where(ri, ōi) = evalPol∗i

(q, χ) for i = 1, 2:

• (r1, ō1) = (scope error , ∅).

• If evalχ(gc1) = false then alsoevalχ(gc2) = false.

• r1 ∈ {+,−} andr2 = r1 and ō2 ≺ ō1.

• r1 = ◦ andr2 ∈ {+, ◦,−} and ō2 ≺ ō1.

3

The trivial solution for implementing policy refinement is the brute force approach, i.e., one simply evaluates both
policies for any request and any assignment, and compare the results. Clearly, a brute force search is not desirable,
and we can identify three inherent weaknesses of this approach that we will address in our algorithm.

First, the processing is performed for all element of the joint set of valid requests. In case several requests have
exactly the same matching rules in the rule-list, it would be beneficial to group together these quadruples and perform
a single processing for all of them.

Secondly, in order to cover all the combinations of conditions which could be satisfied by a given request, the brute
force algorithm has to consider all the possible subsets of the sets of conditions defined in the two compared policies.
However, it might be that some subsets do not have to be considered since several conditions cannot be satisfied at the
same time. It could hence be beneficial to restructure the set of rules with respect to their conditions.

Finally, several rules will typically useless for a particular request and assignment since they are always hidden by
matching rules which have higher priority. One should hence restructure the rule list in a suitable way.

We will addressed this weaknesses in the next section by ourscope-based approachfor comparing privacy policies.

3 Scope-based Policy Comparison

This section describes our algorithm for policy refinement, calledscope-based policy comparison. The algorithm
consists of four parts:

1. Thescope-based expansiontransforms the rule-list of a policy into an ordered list of so-called scope-based
rules. In contrast to usual rules, scope-based rules consist of a sequence of qualifiers instead of a single qualifier.
The derived list of rules is equivalent to the old one in the sense that the evaluation of each request results in
the same output for each possible assignment. However, the derived list enjoys a property that is crucial for the
correctness of the following phases, namely that rules that are matching for only a small number of elements
come first.

2. Given two such policies with ordered lists of scope-based rules, wenormalizethe qualifier sequences of each
rule according to a simple calculus. The essential ideas are to eliminate qualifiers with obligate ruling by
accumulating the respective obligations and to close the sequence, if necessary, with the qualifier(dr, true, d̄o).

3. After the two previous parts, which are used for pre-processing policies, we know show how to efficiently check
if two normalized qualifier sequences are refining in the sense that for every assignment, both sequences yield
the same output and one policy always yields refined obligations.

4. We finally show how to efficiently check for refinement between two policies that have scope-based rule-lists
with normalized qualifier sequences.

In the following, we decided not to present a precise description of the algorithm including all the tedious details that
it has to take care of, both for reasons of readability and for space constraints, but we illustrate its different parts by
means of examples instead. However, the precise definition of the algorithm can easily be derived from our description.

6



3.1 Scope-based Expansion

An important prerequisite for scope-based rules is the notion ofextended rules. Instead of having only one qualifier,
an extended rule may have a sequence of qualifiers. For example, a rule〈(u, d, p, a), (r1, c1, ō1)〉 followed by another
rule 〈(u, d, p, a), (r2, c2, ō2)〉 can be described by the extended rule〈(u, d, p, a), 〈(r1, c1, ō1); (r2, c2, ō2)〉〉, where
evaluation of qualifiers is from left to right and thus respects the precedences of the original rules.

u0

u1 u2

u3 u4 u5 u6

d0

d1 d2

d3 d4

p0

p1 p2

p3 p4

a0

a1 a2

Rule 1
Rule 2
Rule 3

3 1

22

3

2
2

1
3

3

1

1

(a) Hierarchies.

1 〈(u1, d0, p2, a2), (◦, c1, ō1)〉
2 〈(u3, d1, p4, a2), (−, c2, ō2)〉
3 〈(u2, d2, p2, a0), (+, c3, ō3)〉

(b) Rule list.

1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

(c) Expanded rule list.

Figure 1: Example policy. Dashed circles indicate the scopes of the rules in the respective dimensions.

Note that for positive rules, all elements affected by such a rule can easily be represented by their parent element,
i.e., the element that the rule is defined for. In contrast, deny rules do not have such a compact representation since
upward inheritance prevents us from describing all affected elements by means of a single element. However, we can
describe a deny rule for an element(u, d, p, a) by a deny rule for the whole hierarchies, i.e., a rule for the root element,
but explicitly excluding the siblings on the path to the root as defined below (for ease of description, we assume that
each hierarchy has only a single root, which we denote as(u0, d0, p0, a0)):

siblings(〈(u, d, p, a), seq〉)
= {〈(u′, d0, p0, a0), 〈(dr, true, d̄o)〉〉 | u0 > u′ > u} ∪ {〈(u0, d

′, p0, a0), 〈(dr, true, d̄o)〉〉 | d0 > d′ > d}
∪ {〈(u0, d0, p

′, a0), 〈(dr, true, d̄o)〉〉 | p0 > p′ > p} ∪ {〈(u0, d0, p0, a
′), 〈(dr, true, d̄o)〉〉 | a0 > a′ > a}

Roughly, this alternative representation and re-shuffling of the rules allows us to generate a “normal form” for rule-
lists. Although the normal form has more rules than the original rule-list, it simplifies the comparison of the rule-lists
since each individual rule does not necessarily have to be compared with all rules of the other rule-list.

We describe the transformation from the original rule-list to this normal form and to the final list of scope-based
rules by means of an example policy, whose hierarchies and rule-list are depicted in Fig. 1a and Fig. 1b, respectively.
The first step towards the scope-based rule-list is to switch to the above described representation of all deny rules
(i.e., of rule 2 in the example). This means that we first extend each deny rule to all elements of the hierarchies and
then explicitly exclude those elements that must not be affected by this artificially enlarged scope. Formally, this
corresponds to a new rule for the root and additional rules for the respective siblings. However, we have to ensure that
the remaining allow rules (i.e., rule 3) are not affected by the artificially inserted deny rule that covers all elements.
Formally, this means that we have to shift the allow rule before the global deny rule. This is shown in Fig. 1c.

Next, we let all original obligation rules float down the rule-list as follows. We have to distinguish four cases:

7



1. If there is no overlap with the next lower rule, i.e., there are no elements for which both rules are matching, we
swap both rules (as done in Steps (ii) & (v) in Fig. 2).

2. If the scope of the floating rule is contained in the scope of the next rule, the qualifier of that rule is appended to
the floating rule’s qualifier and the obligation rule has reached its final position (shown in Step (vii) in Fig. 3a).

3. If the scope of the next rule is contained in the scope of the floating rule, we swap both rules but additionally
append the qualifier of the floating rule to the qualifier sequence of the current rule.

4. Finally, if both rules only overlap partially, we swap the rules and additionally insert a new rule that deals with
the overlap as follows:

overlap(〈(u, d, p, a) seq1 〉, 〈(u′, d′, p′, a′) seq2 〉) =: 〈(u∗, d∗, p∗, a∗) seq1 〉

whereu∗ =
{
u if u ≤U u′

u′ otherwise
, and similarly for the other dimensions. This is shown in Steps (i), (iii), and

(iv) in Fig. 2.

After we have processed all obligation rules in this way, we let the positive rules float up until we reach a rule whose
scope comprises the scope of the allow rule. In the example policy, rule 3 in Fig. 3a floats up to the top as there are
only either non-overlapping rules (2e, 2d, 2a, 2a’) or partially overlapping obligation rules. This finally yields the
desired scope-based rule-list shown in Fig. 3b. The following lemmas capture the important properties of scope-based
rule-lists:

Lemma 3.1 Let P = (Voc,R, gc, dr , d̄o) be a privacy policy and letSR denote the scope-based
rule-list of R. Let σ = 〈(u, d , p, a), seq〉 and σ′ = 〈(u ′, d ′, p′, a ′), seq ′〉 be arbitrary rules in SR. If
scope(u, d , p, a) ⊂ scope(u ′, d ′, p′, a ′) thenσ has higher precedence thanσ′. 2

Lemma 3.2 LetP = (Voc,R, gc, dr , d̄o) be a privacy policy and letSR denote the scope-based rule-list ofR. Then
for every valid request(uR, dR, pR, aR) for which there exists a matching rule inR, the following holds:

• There exists a rule inSR that matches for(uR, dR, pR, aR).

• Let 〈(u, d , p, a), seq〉 denote the rule with the highest precedence inSR and let (uR, dR, pR, aR) be an ar-
bitrary element in the scope of(u, d, p, a). Thenseq contains the qualifiers from all matching rules inR for
(uR, dR, pR, aR).

2

Before we continue with the next part of the algorithm, we additionally want to cover those requests for which there is
no matching rule in the rule-list; in particular, we have to consider those requests that are valid requests for the policy
that we want to compared our policy with. Thus, for every root(u∗, d∗, p∗, a∗) of the combined vocabularies for which
there does not already exist a matching rule, the rule〈(u∗, d∗, p∗, a∗), (dr , true, d̄o)〉 is appended to the rule-list.

3.2 Normalization of Qualifier Sequences

In this part, qualifier sequences are transformed into equivalent, so-callednormalizedsequences, that do not contain
qualifiers with obligate ruling anymore and that each sequence ends with qualifier(dr , true, d̄o). We will see in
Section 3.3 that two qualifier sequences of this special form can easily be compared. We describe the transformation
be the following 9 axioms, which are used as rewriting rules.

The axioms (1) and (2) state that an obligate ruling can always be shifted to the right by a suitable adoption of
conditions and obligations. Note that there is no axiom for two subsequent qualifiers with obligate ruling.

(◦, c1, ō1); (r, c2, ō2)
(r, c1, ō1&ō2)

c1 ⇒ c2, r ∈ {+,−} (1)

(◦, c1, ō1); (r, c2, ō2)
(r, c1 ∧ c2, ō1&ō2) (r, c2, ō2) (◦, c1, ō1)

¬(c1 ⇒ c2), r ∈ {+,−} (2)

8



2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉

. . .

(a) After step (i)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉

. . .

(b) After step (ii)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉

. . .

(c) After step (iii)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉

. . .

(d) After step (iv)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉

. . .

(e) After step (v)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

(h) After step (vi)

Figure 2: Obligate rule 1 floating down.

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
1’ 〈(u1, d0, p2, a2) 〈(◦, c1, ō1); (−, c2, ō2).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

(a) After step (vii).

3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
1’ 〈(u1, d0, p2, a2), 〈(◦, c1, ō1); (−, c2, ō2).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

(b) After floating up positive rule 3.

Figure 3: Reordered extended rule-list

9



The axioms (3) and (4) are used to simplify a qualifier sequence. They omit qualifiers, which are “hidden” beyond a
qualifier with higher precedence, and derive a more useful representation of conditions.

(r1, c1, ō1); (r2, c2, ō2)
(r1, c1, ō1)

c2 ⇒ c1, r1 ∈ {+,−}, r2 ∈ {+,−, ◦} (3)

(r1, c1, ō1); (r2, c2, ō2)
(r1, c1, ō1); (r2, c2 ∧ ¬c1, ō2)

¬(c2 ⇒ c1), r1 ∈ {+,−}, r2 ∈ {+,−, ◦} (4)

In case the transformed sequence generated by the application of the already described axioms does not end with the
qualifier(dr , true, d̄o), we want to be able to explicitly append this qualifier to the qualifier sequence. This is captured
in axiom 5.

(◦, c, ō).
(dr, c, ō&d̄o); (dr, true, d̄o)

(5)

As an example, consider the qualifier sequence (6) that we want to transform into normal form. Applying the axioms
2, 1, 1, and 3, we get the rearranged sequence (7), where hidden qualifiers are removed and obligations with obligate
ruling are pushed into qualifiers with allow or deny ruling. The sequence is terminated by an “otherwise” qualifier,
which returns the default ruling and default obligation of the policy.

(◦, c1 ∧ c2, ō7); (+, c1, ō6); (−, c1 ∧ c2, ō5); (◦, c2, ō4); (−, c2, ō1) (6)

(+, c1 ∧ c2, ō6&ō7); (−, c2, o4&ō1)(+, c1, ō6)(dr, true, d̄o) (7)

For optimization, we finally also introduce the following two axioms. They correspond to elimination rules that remove
qualifiers which will not be applied:

(r1, c1, ō1); (r2, c2, ō2)
(r1, c1, ō1)

c2 ⇒ false, r1 ∈ {+,−}, r2 ∈ {+,−, ◦} (8)

(r1, c1, ō1); (r2, c2, ō2)
(r2, c2, ō2)

c1 ⇒ false, r1 ∈ {+,−}, r2 ∈ {+,−, ◦} (9)

The following lemma summarizes the main property of normalized qualifier sequences.

Lemma 3.3 Let(r , c, ō) and(r ′, c′, ō′) be two qualifiers in a normalized sequenceseq , and let⇒ be a correct implies
relation for the considered vocabulary. Then the following holds:

1. If c ⇒ c′ then(r , c, ō) has higher precedence than(r ′, c′, ō′), i.e., it comes first in the sequence.

2. For any assignmentχ for the considered vocabulary, there exists at least one qualifier inseq whose condition is
satisfied underχ.

2

3.3 Comparison of Qualifier Sequences

The comparison of two sequences checks whether there is a refinement for every possible pair of qualifiers. Condition
comparison is based on the considered implies relation, which we assume to be correct. To illustrate the comparison
process, we consider the normalized qualifier sequences (10) and (11).

(r1, c1 ∧ c2 ∧ c3, ō1); (r2, c1 ∧ c2, ō2); (r3, c2, ō3); (r4, c1, ō4); (dr1, true, d̄o1〉 (10)

(r′1, c1 ∧ c3, ō′1); (r′2, c3, ō
′
2); (r′3, c1, ō

′
3); (dr2, true, d̄o2) (11)

Roughly, for each qualifier in sequence (11) and in descending order, we check those qualifiers in sequence (10) for
refinement whose conditions could be concurrently satisfied until we reach a qualifier whose condition implies the
qualifier’s condition of sequence (11). If we obtain a refinement for this qualifier (we will explain this in more detail
below), we proceed with the next qualifier of sequence (11), until we finally reach a qualifier in the sequence (11)

10



whose condition must be fulfilled under the assumption that the condition of the currently investigated qualifier of
sequence (10) holds. After this refinement check is also successful, we proceed with the next element of sequence
(10).

In the example, we start with the qualifier(r ′1 , c1 ∧ c3 , ō′1 ) and we assume that the conditionc1 ∧ c3 is true. We
process the elements of sequence (10) in descending order until a qualifier with satisfied condition is found. Since
the conditionc1 ∧ c2 ∧ c3 of the first qualifier(r1 , c1 ∧ c2 ∧ c3 , ō1 ) may be true concurrently, we have to compare
(r1, ō1) and(r′1, ō

′
1). More precisely, we have to check that ifr1 6= ◦ we haver′1 = r1; moreover̄o′1 must refinēo1. If

this holds we continue the comparison with the next qualifier in sequence (10).
We know at this point that((c1 ∧ c3) ∧ ¬(c1 ∧ c2 ∧ c3)) holds. Since the implies relation is correct, we obtain

((c1 ∧ c3)∧¬(c1 ∧ c2 ∧ c3))⇒ ¬(c1 ∧ c2); hence the condition(c1 ∧ c2) cannot be true. This means that the qualifier
(r2, c1 ∧ c2, ō2) does not have to be considered. The same holds for qualifier(r3, c2, ō3). Because ofc1 ∧ c3 ⇒ c1 ,
(r4 , c1 , ō4 ) is the next matching qualifier and the tuples(r4, ō4) and(r′1, ō

′
1) have to be compared. Moreover, since

c1 ∧ c3 impliesc1, no remaining elements in sequence (10) must be checked.
We continue the comparison with the second qualifier in sequence (11). At this point we know thatc3 and

¬(c1 ∧ c3) hold. Because conditionc1 ∧ c3 does not hold, the qualifier(r1, c1 ∧ c2 ∧ c3, ō1) cannot apply. Further,
because of¬(c1 ∧ c2) ∧ c3, the same holds for the qualifiers(r2, c1 ∧ c2, ō2), (r3, c2, ō3), and(r4, c1, ō4). Thus, we
have to check(r ′2 , c3 , ō′2 ) with (dr1, true, d̄o1).

Similarly, we check the remaining elements in sequence (11). The processing of all qualifiers in sequence (11) is
summarized in Table 1.

Satisfied Condition Result given by seq (10) Result given by seq (11)

c1 ∧ c2 ∧ c3 (r1 , ō1 ) (r ′1 , ō
′
1 )

c1 ∧ c3 (r4 , ō4 ) (r ′1 , ō
′
1 )

c2 ∧ c3 (r3 , ō3 ) (r ′2 , ō
′
2 )

c3 (dr1 , d̄o1 ) (r ′2 , ō
′
2 )

c1 ∧ c2 (r2 , ō2 ) (r ′3 , ō
′
3 )

c1 (r4 , ō4 ) (r ′3 , ō
′
3 )

c2 (r3 , ō3 ) (dr2 , d̄o2 )

- - (dr1 , d̄o1 ) (dr2 , d̄o2 )

Table 1: Request Evaluation Results Comparison

3.4 Comparison of extended rule-lists

Finally, we are ready to check for refinement of two privacy policies by comparing their normalized, scope-based
rule-lists. If there is refinement for the qualifier sequences of all “matching” rules then there is policy refinement.

Let SRi for i = 1, 2 denote two scope-based rule-lists. Letσ2 = 〈(u2 , d2 , p2 , a2 ), seq2 〉 be a rule inSR2 .
ProcessingSR1 in descending precedence, we check each overlapping ruleσ1 = 〈(u1 , d1 , p1 , a1 ), seq1 〉 whether the
qualifier sequencesseq2 andseq1 constitute a refinement. If there is no refinement, the algorithm stops and returns
false. The processing finishes when a ruleσ′1 with scope(σ′1 ) ⊆ scope(σ2 ) is found. This is always the case because
everySR ends with rule(s) covering the whole hierarchies (by construction).

To illustrate the comparison, consider the two scope-based rule-lists depicted in Fig. 4. The goal of the comparison
is to test whether every request evaluation result inSR2 refines the corresponding evaluation result inSR1 . Thus, for
every rule inSR2, all possible matching rules inSR1 are tested.

1 〈(u2, d2, p2, a0), seq1〉
2 〈(u4, d0, p2, a2), seq2〉
3 〈(u4, d0, p0, a0), seq3〉
4 〈(u1, d0, p2, a2), seq4〉
5 〈(u0, d0, p0, a0), seq5〉

List SR1

1’ 〈(u4, d0, p0, a0), seq′1〉
2’ 〈(u0, d0, p0, a0), seq′2〉

List SR2

Figure 4: Example extended rule list comparison.

11



In descending order, we check each rule inSR2 with rules in SR1 whose scopes overlap, comparing their
qualifier sequences as described in Section 3.3. Thus, we begin with rule 1’. The first overlap is with rule 2
(scope(u4 , d0 , p2 , a2 ) ⊆ scope(u4 , d0 , p0 , a0 )). If the qualifier sequencesseq ′1 andseq2 are a refinement then we
continue elseSR2 is not a refinement ofSR1 and we stop. The next overlapping rule is rule 3. After successful
comparison we do not have to check the remaining rules inSR1 as the scope of rule 3 completely covers the scope
of rule 1’. We continue with the second rule inSR2 and check overlap with the rules inSR1 in descending order.
Because rule 2’ has scope(u0, d0, p0, a0), the qualifier sequence of every rule inSR1 must be checked.

The structure ofSRi allows for testing the refinement for all the possible valid requests. Thus, if the refinement is
verified for all the compared sequences of qualifiers then the comparison algorithm returnstrue.

Theorem 3.1 LetPi = (Vi ,Ri , gci , dri , d̄oi) for i = 1 , 2 be two privacy policies. Let furtherP ∗i for i = 1, 2 denote
the policies that are derived as in Definition 2.10, and let a correct implies relation for the considered vocabularies be
given. Then the following holds:

If the scope-based comparison algorithm applied onP ∗1 andP ∗2 outputstrue, thenP1 is a refinement of
P2. Moreover, if the implies relation is additionally complete, then the converse direction also holds, i.e.,
if P1 is a refinement ofP2 then the scope-based comparison algorithm outputstrue.

2

4 Conclusion

We have presented an efficient algorithm to check privacy policy refinement. In particular, we have addressed the
privacy-inherent difficulties of upward inheritance of deny rules, accumulation of obligations via obligate rules, and
conditional rules. No other efficient algorithmic solution for checking refinement of privacy policies has yet been
given.

References

[1] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise Privacy Authorization Language (EPAL).
Research Report RZ 3485, IBM Research, Mar. 2003.

[2] P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P privacy policies and privacy authorization. InProc. 1st
ACM Workshop on Privacy in the Electronic Society (WPES), pages 103–109, 2002.

[3] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit for managing enterprise privacy policies. InEuropean
Symposium on Research in Computer Security (ESORICS), Lecture Notes in Computer Science, pages 101–119.
Springer, 2003.

[4] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekerat. Obligation monitoring in policy management. InProc. 3rd
IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY), pages 2–12, 2002.

[5] P. A. Bonatti, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. A component-based architecture for
secure data publication. InProc. 17th Annual Computer Security Applications Conference, pages 309–318, 2001.

[6] A. Cavoukian and T. J. Hamilton.The Privacy Payoff: How successful businesses build customer trust. McGraw-
Hill/Ryerson, 2002.

[7] N. Damianou, N. Dulay, E. Lupo, and M. Sloman. The Ponder Policy Specification Language. InPolicies
for Distributed Systems and Networks (Policy 2001), Lecture Notes in Computer Science 1995, pages 18–39.
Springer, 2001.,

[8] S. Fischer-Ḧubner.IT-security and privacy: Design and use of privacy-enhancing security mechanisms, Lecture
Notes in Computer Science 1958. Springer, 2002.

12



[9] S. Jajodia, M. Kudo, and V. S. Subrahmanian. Provisional authorization. InProc. E-commerce Security and
Privacy, pages 133–159. Kluwer Academic Publishers, 2001.

[10] G. Karjoth and M. Schunter. A privacy policy model for enterprises. InProc. 15th IEEE Computer Security
Foundations Workshop (CSFW), pages 271–281, 2002.

[11] G. Karjoth, M. Schunter, and M. Waidner. The platform for enterprise privacy practices – privacy-enabled
management of customer data. InProc. Privacy Enhancing Technologies, Lecture Notes in Computer Science
2482, pages 69–84. Springer, 2002.

[12] Platform for Privacy Preferences (P3P). W3C Recommendation, Apr. 2002.http://www.w3.org/TR/
2002/REC-P3P-20020416/ .

[13] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An access control language for security policies with
complex constraints. InProc. Network and Distributed System Security Symposium (NDSS), pages 89–107, 2001.

[14] TRUSTe. Privacy Certification. Available atwww.truste.com .

[15] eXtensible Access Control Markup Language (XACML). OASIS Committee Specification 1.0, Dec. 2002.www.
oasis-open.org/committees/xacml .

13


