
E-P3P Privacy Policies and Privacy Authorization

Paul Ashley
IBM Software Group, Australia

pashley@au1.ibm.com

Satoshi Hada
IBM Tokyo Research

Laboratory, Japan

satoshih@jp.ibm.com

Günter Karjoth,
Matthias Schunter
IBM Zurich Research

Laboratory, Switzerland

{gka,mts}@zurich.ibm.com

ABSTRACT
Enterprises collect large amounts of personal data from their
customers. To ease privacy concerns, enterprises publish pri-
vacy statements that outline how data is used and shared.
The Platform for Enterprise Privacy Practices (E-P3P) de-
fines a fine-grained privacy policy model. A Chief Privacy
Officer can use E-P3P to formalize the desired enterprise-
internal handling of collected data. A particular data user
is then allowed to use certain collected data for a given pur-
pose if and only if the E-P3P authorization engine allows this
request based on the applicable E-P3P policy. By enforcing
such formalized privacy practices, E-P3P enables enterprises
to keep their promises and prevent accidental privacy viola-
tions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Controls; E.3 [Data Encryption]: Standards; K.4.1
[Computers and Society]: Public Policy Issues—Privacy

General Terms
Management,Security,Standardization

Keywords
Privacy Policies, Privacy Manager, E-P3P

1. INTRODUCTION
Enterprises store a variety of personally identifiable in-

formation (PII) on their customers for their business. As
a consequence enterprises publish privacy statements that
promise fair information practices. Written in natural lan-
guage or described using P3P [12], they merely constitute
privacy promises and are not necessarily backed up by tech-
nological means.

In order to enforce these privacy promises inside an en-
terprise, the Platform for Enterprise Privacy Practices (E-
P3P) defines the enterprise privacy enforcement system for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’02,November 21, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-633-1/02/0011 ...$5.00.

enterprise-internal privacy policies [8]. Unlike P3P, E-P3P
has a well-defined privacy-architecture and semantics. This
enables an enterprise to internally enforce the E-P3P privacy
policies while promising a P3P statement to its customers.
Whenever an enterprise collects, stores, or processes PII,
E-P3P can be used to ensure that the data flows and usage
practices of an enterprise comply with the privacy statement
of that enterprise.

For example, assume that an enterprise’s database already
stores customer’s email addresses and that the E-P3P pri-
vacy policy says that the marketing department is allowed
to use the stored email addresses, but the sales department
is not allowed to do that. When applications access email
addresses, the E-P3P policy is always enforced. That is, if
the application is used by an employee in the marketing de-
partment then the access is authorized, but if it would be
used by a sales department employee, then access would be
denied.

E-P3P cannot prevent untrusted systems or administrator
from using PII in an unauthorized way. However, it can
help enterprises to maintain PII in compliance with laws
and privacy policies.

In this paper, we describe the formal model of E-P3P
privacy policy language, outline the XML syntax of the lan-
guage with some selected details, and describe the autho-
rization engine processing a policy.

1.1 Related Work
The Platform for Enterprise Privacy Practices (E-P3P)

was proposed in [8]. The paper described the basic con-
cept but no detailed syntax and semantics of E-P3P. Most
building blocks of E-P3P policies have been introduced as
features of access control policies. Examples are obligations
[3, 10], purpose hierarchies [4], subject and object hierar-
chies [6], precedences, or conditions on context [10]. The
core of new privacy-specific access control languages [5, 7,
8] are the notions of purpose and purpose-binding together
with a privacy-specific combination of other advanced access
control features.

E-P3P is similar to APPEL [13] in the sense that both
languages define the syntax and semantics for describing
privacy control rules. However, they are designed for differ-
ent purposes. APPEL is used by end users to describe their
individual preferences. On the other hand E-P3P is used by
enterprises to describe their internal privacy policies.

The Platform for Privacy Preferences (P3P) standard of
W3C [12] enables a Web site to declare what kind of data
is collected and how this data will be used. A P3P policy
may contain the purposes, the recipients, the retention pol-

icy, and a textual explanation of why this data is needed.
P3P defines standardized categories for each kind of infor-
mation included in a policy. Unlike P3P, E-P3P defines the
privacy practices that are implemented inside an enterprise.
Since practices depend on internal details of the enterprise,
the syntax and semantics of E-P3P result in much more de-
tailed policies that can be enforced and audited automati-
cally. However, the resulting privacy guarantees can be sim-
plified as a P3P promise that is offered for the users of the
services. Therefore, P3P is used to publish an enterprise
privacy policy in order to collect PII from the customers
while E-P3P is used for internally enforcing the enterprise
policy to control accesses to the collected PII. In this sense,
E-P3P complements P3P. The automated translation of E-
P3P privacy practices into P3P promises has been examined
in [11].

Issues relating to the practical deployment of E-P3P in an
enterprise are discussed in [2].

1.2 Organization
In Section 2, we describe the formal model of E-P3P pri-

vacy policies and privacy authorization. This includes defi-
nitions of the terminology as well as the rules of a policy. In
Section 3, we discuss some details of the XML-based syntax
for E-P3P Privacy Policies that is used to enable interop-
erability of privacy products. In Section 4, we describe the
E-P3P authorization engine and its interfaces. Section 5
concludes the paper.

2. MODEL AND SEMANTICS
E-P3P privacy policies define the purposes for which col-

lected data (PII) can be used, model the consent a data
subject can give, and may impose obligations onto the en-
terprise. In this section, we present a refined and formalized
notion of the E-P3P privacy policies that has been outlined
in [8]. This definition models the elements and semantics of
an E-P3P privacy policy.

A E-P3P privacy policy defines what data users can per-
form what actions for what purposes on which data cate-
gories. For example, a policy can define that the ‘marketing
department’ can read the data category ‘customer record’
for purpose ‘e-mail notification’. In Section 2.1, we define
the syntax of an E-P3P privacy policy. In Section 2.2, we
define the semantics of processing simple requests. A sim-
ple request is an access request with one element of each
type. The result of evaluating a simple request is a decision
whether the access is allowed or denied. In Section 2.3, we
define the semantics of a compound request, which contains
multiple elements of each type. Multiple data users indicate
that the subject accessing the data can play multiple roles.
If one role can access the data then the compound request
is granted. Multiple data categories indicate that a sub-
ject wants to access data belonging to multiple categories,
such as multiple columns of a database. Multiple purposes
indicate that a subject wants to access data for different
purposes. In these cases, the compound request is granted
if all categories/actions/purposes are allowed.

2.1 Elements of a Privacy Policy
An enterprise privacy policy can be formalized by a pair

Policy := (Terms,Rules) that contains a terminology
used in the policy and a set of authorization rules. Unlike
P3P, an E-P3P policy self-defines its terminology.

The terminology Terms consists of the six elements
(DCH , PH , DUH , A, O, C). DCH , PH , and DUH de-
fine the hierarchies of data categories, purposes, and data
users. A, O , and C define the sets of actions, obligations,
and conditions.

Data categories DCH := (T,≥T) are structured in a tree
hierarchy, where T is the set of data categories and ≥T de-
fines a relationship between two data categories. t ≥T t′

means that t is an ancestor data category of t′ where each
parent data category groups its child data categories. Ex-
amples are ‘email’ or ‘financial data’ that are children of ‘any
data’. The basic idea of using a hierarchical data structure
is that this enables to refine the meaning of elements in a
hierarchical sense.

Similarly, purposes and data users are structured in a
tree hierarchy PH := (P,≥P) and DUH := (U,≥U), re-
spectively. Examples of purposes are ‘marketing’ or ‘sales’,
which are children of ‘business purposes’. Examples of
data users are ‘sales department’ or ‘marketing department’,
which are children of the enterprise ‘Borderless books’.

The set Rules := (Ruleset , dr) contains a set Ruleset of
authorization rules that allow or deny an action as well as
an element dr that defines the default ruling (permission) of
this rule-set. Allowed default rulings are {+, ∅,−,×} repre-
senting ‘allow’, ‘don’t care’, ‘deny’, and ‘error’.

An authorization rule (i, t, p, u, r, a, o, c) ∈ Ruleset con-
sists of the following eight elements:

Precedence i ∈ ZZ The precedence of the rule. Higher
precedence rules unconditionally overrule lower pre-
cedence ones.1

Data Category t ∈ T The category of data that may be
accessed. Examples include “contact data” or “medi-
cal measurements”.

Purpose p ∈ P The purpose for which data may be used.

Data User u ∈ U The data user that may use the data.
Examples can be an entity inside an enterprise such as
“John Doe” or “Marketing Department”.

Ruling r ∈ {+,−} The ruling (permission) of the rule. A
rule either allows (+) or denies (−) the action. The
rulings ‘∅’ and ‘×’ are only allowed as a default ruling
but not inside a rule.

Action a ∈ A The action that may be performed on the
data. Examples are ‘read’, ‘write’, or ‘disclose’.

Obligations o ⊆ O The duties that the rule mandates. A
rule can contain a set o of obligations that need to
be performed. The empty obligation is denoted by ∅.
This obligation defines that the rule does not impose
duties on the enterprise. Examples for obligations are
“limited retention”, “log this access”, or “notify data
subject”.

Conditions c ⊆ C The conditions under which the rule is
applied. A rule can contain a set of Boolean condi-
tions that are combined by a logical and. Rules where
at least one of the conditions is not satisfied will be

1Note that E-P3P is a technical interchange format. Since
policies with precedences are difficult to understand, policy
editors will usually use other representations for prioritizing
rules.

ignored. Examples are opt-in or opt-out choices or
conditions on enterprise data (such as a credit-limit).
Unconditional rules contain no condition. This is de-
noted by ∅.

2.2 Formal Semantics of Simple Requests
A simple request is a request (tR, pR, uR, aR) ∈ T×P×U×

A with one element of each type. The semantics of a pri-
vacy policy Policy = (Terms, (Ruleset, dr)) processes a
request based on the set of authorization rules whose condi-
tions are satisfied. This process is split into a pre-processing
stage and a request processing stage.

The pre-processing stage creates a set of preliminary au-
thorization rules PA as follows:

Direct Authorization For each rule (i, t, p, u, r, a, o, c) ∈
Ruleset, a tuple (i, t, p, u, r, a, o, c) is added to PA.

Down-Inheritance For each rule (i, t, p, u, r, a, o, c) ∈ PA,
for every (t′, p′, u′) such that t ≥T t′, p ≥P p′, and
u ≥U u′, a tuple (i, t′, p′, u′, r, a, o, c) is added to PA.

Up-Inheritance of Deny For each rule (i, t, p, u,−, a, o,

c) ∈ PA, for every (t′, p′, u′) such that t′ ≥T t, p′ ≥P p,
and u′ ≥U u, a tuple (i, t′, p′, u′,−, a, o, c) is added to
PA.

Note that ‘deny’-rules are inherited both downward and up-
ward along the three hierarchies while ‘allow’-rules are in-
herited only downward.

After these pre-processing steps, a request
(tR, pR, uR, aR) ∈ T × P × U × A is processed as fol-
lows using a copy PA′ of PA:

Process Conditions All tuples2 (i, t, p, u, r, a, o, c) ∈ PA′

such that c contains an unsatisfied condition are re-
moved from PA′.

Denial Takes Precedence If a tuple (i, t, p, u,−, a, o, c) ∈
PA′ exists, all tuples (i, t, p, u, +, a, o′, c′) ∈ PA′ with
any o′, c′ are removed.3

Process the Simple Request For each precedence level
i∗ (starting from the highest one), select all tuples
(i∗, tR, pR, uR, r, aR, o, c) ∈ PA′. If such tuples ex-
ist, the pair R := (r,RO) is returned, where RO :=
{o|(i∗, tR, pR, uR, r, aR, o, c) ∈ PA′}. Note that RO is
a set of obligation sets. 4 Else, the next lower prece-
dence level i∗ − 1 is processed.

Apply the Default Ruling If there is no such tuple at
any precedence level (i.e., i∗ is lower than any prece-
dence of any rule), the default ruling with the empty
obligation {(dr, ∅)} is returned.

If the policy is non-deterministic and the semantics returns
a set RO containing a set with multiple sets of obligations.
In this case, the implementation can choose any contained
element (i.e., any of the obligation sets) to be enforced.

2We talk about tuples since one rule is usually decomposed
into many tuples.
3Processing “denial takes precedence” is performed only on
the remaining rules with satisfied conditions. As a conse-
quence, it must be done at run-time.
4If the policy is deterministic, this set RO will contain only
one element. Non-deterministic policies produce sets with
identical rulings but different obligations.

2.3 Formal Semantics of Compound Requests
A compound request is a request (tR, pR, uR, aR) with sets

of elements of each type. The semantics is defined by de-
composing the compound into simple requests and then re-
composing the answer. The intuitive semantics of a com-
pound request is to check whether any of the data users
is allowed to access all categories, for all purpose, and all

actions. For a given data user that is allowed or denied to
perform the action, the resulting obligations are collected
from all applicable rules and then returned. Note that this
semantic definition is not optimized for performance. Since
implementations need not implement this exact algorithm,
they can further optimize.

2.3.1 Processing a Single Data User
Let

auth : T × P × U × A → {×, +,−, ∅} × P(O)

be the function defined by the semantics for processing sim-
ple requests. We denote authr(t, p, u, a) → r as the ruling
part and autho(t, p, u, a) → o as the obligation part of the
result. The processing of a compound request (tR, pR, u, aR)
for a single data user u is authC(tR, pR, u, aR) as defined in
Table 1.

2.3.2 Processing Multiple Data Users
Let authC(t, r, u, a) → (r,O) be the function defined by

processing compound requests for a single data user. The
processing of a compound request (tR, pR, uR, aR) for mul-
tiple data users uR is authC(tR, pR, uR, aR) as defined in
Table 1.

3. SELECTED DETAILS OF THE E-P3P
LANGUAGE

In this section, we outline some implementation details
of the E-P3P XML format that might be interesting for
designing similar languages.

3.1 Language Details
E-P3P is an XML-based language. The formal syntax in

Section 2.1 has been translated into an XML schema that
can be used to validate E-P3P policies. An E-P3P policy has
one section defining the terminology and one section defin-
ing the rules. Rules cross-reference element definitions by
means of ID/IDREF pairs. A rule may specify one or more
identifiers for each element (data user, data category, pur-
pose, and action), and allows or denies the cross-products
of the specified identifiers. Besides terms and rules, an E-
P3P policy is augmented with policy-information such as an
issuer or an expiry date.

3.2 Deployment Mapping
Unlike P3P [12], E-P3P does not assume a pre-defined

terminology but defines all the identifiers that can be used
in authorization rules. The reason for this decision is that
E-P3P will be used by a variety of enterprises in different
sectors. There exists no terminology such that one fits all.
As a consequence, each policy first declares its terminology.

In order to enforce a policy, the privacy enforcement sys-
tem is required to understand the particular terminology
used by the policy to be enforced. In order to enable inter-
operation, multiple systems need to agree on the terminol-

authC(tR, pR, u, aR) :=

8>>>>>>>>>><>>>>>>>>>>:
(×, ∅) if ∃(t, p, u, a) ∈ (tR, pR, u, aR) : authr(t, p, u, a) = ×
(∅, ∅) elseif ∀(t, p, u, a) ∈ (tR, pR, u, aR) : authr(t, p, u, a) = ∅

(+, O) elseif ∀(t, p, u, a) ∈ (tR, pR, u, aR) : authr(t, p, u, a) ∈ {∅, +}

with O :=

�
autho(t, p, u, a) | (t, p, u, a) ∈ (tR, pR, u, aR);

| and authr(t, p, u, a) = +

�
(−, O) else

with O :=

�
autho(t, p, u, a) | (t, p, u, a) ∈ (tR, pR, u, aR);

| and authr(t, p, u, a) = −

�
authC(tR, pR, uR, aR) :=

8>><>>: (+,O) if ∃u ∈ uR : authC(tR, pR, u, aR) = (+, O)

(−,O) elseif ∃u ∈ uR : authC(tR, pR, u, aR) = (−, O)
(×, ∅) elseif ∃u ∈ uR : authC(tR, pR, u, aR) = (×, ∅)
(∅, ∅) else ∃u ∈ uR : authC(tR, pR, u, aR) = (∅, ∅)

Table 1: Semantics for Compound Requests with Single and Multiple Data Users

ogy before actually exchanging privacy policies. This agree-
ment on a common terminology can be enterprise- or sector-
specific. Each enterprise then needs to map its (local) ter-
minology onto the commonly agreed one using a so-called
deployment mapping. Negotiating and agreeing such on-
tologies is currently done off-line among the enterprises us-
ing the language. However, by including the terminology,
E-P3P can be used to verify that both enterprises agreed on
a common terminology.

Take for example the data category. In an enterprise
application, PII may be stored in an XML format, in a
relational database, or in another proprietary format. In
all cases, the application needs to define which part of the
stored PII should map to each data category in the partic-
ular terminology.

3.3 Using XSLT as a Condition Language
Privacy authorizations often depend on context data that

is stored outside the authorization engine. Examples are
opt-in or opt-out choices that may be part of a customer
record or information about the person accessing the data.
In order to enable a policy to allow or deny access based on
this data. In order to re-use language standards and to min-
imize the implementation effort by using existing tools, we
have decided to use XSLT to formalize the conditions. An-
other reason is that XSLT can easily be extended by adding
user-defined functions that can interface to the environment
of an enterprise. The basic idea is that context data is pro-
vided as XML. This XML is then translated into <TRUE/>

if and only if the Boolean condition is satisfied.

3.3.1 Defining Conditions
An E-P3P policy defines conditions that can evaluate

containers. A container definition defines the context
data required to evaluate conditions. It contains a list
of application-specific attribute names that can be multi-
valued and abstract from the actual data model of the en-
terprise.

A condition definition then defines a particular condition.
It identifies the containers whose data it evaluates. In ad-
dition, it contains an XML stylesheet that implements the
condition. Once the condition is defined, it can be referenced
via their identifiers in any rule.

3.3.2 Evaluating Conditions
When a condition specified in a rule is evaluated, we need

to look at the condition definition. Before actually applying
the XSLT stylesheet to the context data, the attributes of
the required containers are structured in a two-level XML
format as follows:

1. Create a top-level element called “XmlADI”, where
ADI stands for access decision information.

2. For each specified container, add a child element with
the container’s identifier as its element name.

3. For each attribute name/value pair contained by the
container, add a child element that has the attribute
identifier as its element name and the value as its tex-
tual content. Recall that an attribute can have multi
values.

These containers can be validated using the syntax defined
in the corresponding container definitions. After creating
the <XmlADI> element, the XSLT stylesheet is then used to
translate the ADI document into either <TRUE/> or any-
thing else. If the resulting XML is <TRUE/>, the condition
is evaluated to be true. Otherwise, it is evaluated to be false.

3.3.3 Example
We now consider an example that illustrates the use of

XSLT to implement Boolean conditions. Consider the fol-
lowing two container definitions. The two containers contain
data about the user who currently accesses the data and the
patient record of the patient who’s data is accessed.

<container id="DataUserInfo">
<attribute id="DataUserID"

maxOccurs="1"
minOccurs="1"
simpleType="xsd:string"/>

<attribute id="WorkingOnStations"
maxOccurs="unbounded"
minOccurs="1"
simpleType="xsd:string"/>

<attribute id="OnDuty"
maxOccurs="1"
minOccurs="1"
simpleType="xsd:boolean"/>

</container>
<container id="PatientRecord">

<attribute id="Station"
maxOccurs="1"
minOccurs="1"
simpleType="xsd:string"/>

<attribute id="PrimaryDoctorID"
maxOccurs="unbounded"
minOccurs="1"
simpleType="xsd:string"/>

</container>

We use the <XmlADI> element to enclose the list of contain-
ers as described above. The ADI document corresponding
to the above container definitions may look as follows:

<XmlADI>
<DataUserInfo>
<DataUserID>Jane Doe</DataUserID>
<WorkingOnStations>50B</WorkingOnStations>
<WorkingOnStations>ER</WorkingOnStations>
<OnDuty>true</OnDuty>

</DataUserInfo>
<PatientRecord>
<Station>50B</Station>
<PrimaryDoctorID>John Doe</PrimaryDoctorID>
<PrimaryDoctorID>Bill Doc</PrimaryDoctorID>

</PatientRecord>
</XmlADI>

We now evaluate this data using the following XSLT-based
condition. The condition expressed by the stylesheet is that
the rule only applies if the data user (a nurse) is working on
a station in the same area where the patient lies and that
the nurse needs to be on duty.

<condition id="check">
<evaluates-container refid="DataUserInfo">
<evaluates-container refid="PatientRecord">
<xsl:stylesheet
version="1.0"
<xsl:output method="xml" indent="no"/>
<xsl:strip-space elements="*"/>
<xsl:template match="/XmlADI">

<xsl:if test="
PatientRecord/Station
=DataUserInfo/WorkingOnStations

and DataUserInfo/OnDuty">
<TRUE/>

</xsl:if>
</xsl:template>

</xsl:stylesheet>
</condition>

3.4 Configurable Obligation Elements
Obligations are duties that are imposed by the privacy

policy onto the enterprise. Examples are auditing, logging,
limited retention, notifications, or collecting additional con-
sent.

An obligation usually corresponds to executing an imple-
mentation that is external to the authorization engine. In
order to enable flexibility, the E-P3P rules can identify obli-
gations while specifying multi-valued parameters to be in-
put to this external implementation. The syntax of each
parameter is defined in the same way as the attributes in a
container definition are defined. In the following example,
the ‘retention’ obligation specifies a parameter ‘days’ that is
used to signal that data shall be deleted after the number
of days specified by the parameter.

<obligation id="retention">
<parameter

id="days"
simpleType="xsd:positiveInteger"
minOccurs="1"
maxOccurs="1"/>

</obligation>

This obligation with the parameter instances is then used in
an E-P3P rule as follows:

<obligation refid="retention">
<parameter refid="days">30</parameter>

</obligation>

The advantage of having parameterized obligations is to en-
able a wider range of behaviors with one pre-installed obli-
gation and with only one piece of code that implements it.

4. THE E-P3P AUTHORIZATION ENGINE
In this section, we describe the E-P3P authorization en-

gine. We focus on the authorization algorithm and the au-
thorization interface. The described algorithm only handles
simple requests but an extension for compound request pro-
cessing is quite straightforward.

4.1 Authorization Algorithm
The E-P3P authorization engine receives access requests,

which consist of a single data user, a single data category, a
single purpose, a single action, and context data as defined
in the policy. It outputs a ruling (‘allow’, ‘deny’, ‘none’, or
‘error’), the rule identifier that mandates the ruling, and the
list of obligations that are specified in the rule. In case the
privacy policy mandates the default ruling, both the rule
identifier and the obligation list are empty.

The algorithm presented in Section 2 defines the E-P3P
semantics. However, there are more efficient ways to imple-
ment this algorithm. In the following, we describe an autho-
rization algorithm to evaluate an E-P3P policy according to
the E-P3P policy semantics, which requires less computa-
tion time. This algorithm also consists of a pre-processing
phase, which optimizes the policy data structure, and a re-
quest processing phase, in which the access decision is com-
puted.

4.1.1 Pre-processing Phase
Goal of the access decision function is to find in the E-P3P

rule set an authorization rule (i, t, p, u, r, a, o, c) ∈ Ruleset ,
which allows (denies) the given access request, thereby
checking that there is no other rule that would deny (al-
low) the same request. Our approach to simplify the pro-
cessing of an access request is the pre-computation of the
inheritance effects followed by a clustering of related rules
to avoid a sequential search through the rule set.

Recall that ‘allow’- and ‘deny’-rules are inherited down-
ward along the hierarchies of data user, data category and
purpose and also ‘deny’-rules are inherited upward. In the
pre-processing phase, the authorization engine first removes
this inheritance. Then it creates a hash table that maps a
4-tuple (data user, data category, purpose, action) to the list
of rules associated with this 4-tuple. When filled the table
can be used to retrieve rules using such 4-tuples as search
keys. Specifically, the pre-processing is done as follows:

1. For every rule, transform it to simple rules in the cross-
product, where a rule is called simple if it specifies a
single data user, a single data category, a single pur-
pose, and a single action.

2. Add all the simple rules to the hash table. For every
simple request, add the authorization rules generated
via inheritance to the hash table.

3. For each 4-tuple key, sort the list of the associated
rules so that ‘deny’-rules appear before ‘allow’-rules
and rules with higher precedence appear before rules
with lower precedence.

Note that the sorting of the associated rules enables efficient
request processing. When a matching rule is found, there is
no need to search through the rest of the associated rule set
as no other rule can change the result.

4.1.2 Request Processing
A given simple access request is evaluated as follows:

1. From the hash table, retrieve the sorted list of rules
that matches the input 4-tuple.

2. If the list is not empty, then process all the rules in
their order. For each rule, do the following:

(a) Verify all the conditions (if any). If a required
container is missing output ’error’ and stop. If
the condition is not satisfied skip the rule else
continue processing the rule.

(b) If the rule is a ‘deny’-rule return its rule identifier
and its list of obligations. The resulting ruling is
‘deny’.

(c) If the rule is an ‘allow’-rule return its rule identi-
fier and its list of obligations. The resulting ruling
is ‘allow’.

3. As no error occurred nor a rule was found that allowed
respectively denied the request, return the default-
ruling with no rule identifier and no obligation list.

To process a compound request, the compound request is
first decomposed into simple requests and the individual
answers are then combined into the answer as defined in
Section 2.3.

4.2 Design Details and Java Interfaces
We have defined Java APIs to the authorization engine.

The in- and outputs correspond to the in- and outputs of
the algorithm as described in Section 4.

The Java APIs are structured into four main interfaces
named Policy, ContainerProvider, AuthznEngine, and Au-
thznResult. The major idea behind the interface design
is that the ContainerProvider interface defines a call-back
method to dynamically retrieve context data that is needed
to instantiate the XmlADI documents to evaluate the XSLT-
based conditions. That is, the call-back method is invoked
from the AuthznEngine to evaluate given requests. For ef-
ficiency reasons, we decided to use this call-back interface:
Usually, only some conditions will be evaluated and only
some containers will be needed. As a consequence, requir-
ing data for all the containers as input would decrease the
efficiency.

Our interfaces are independent of any standard XML in-
terfaces including DOM, SAX, and JAXP. We implemented
a JAXP- and DOM-based implementation using Xerces and
Xalan. Below is pseudo Java code describing how to use
these interfaces for a request processing.

//Create a Document object representing
//an E-P3P policy.
org.w3c.dom.Document ep3p = ...

//Construct a Policy instance, where we assume
//that we have a DOM-based implementation named
//PolicyImpl. The pre-processing is done here.
Policy policy=new PolicyImpl(ep3p);

//Get the engine to evaluate the E-P3P policy.
AuthznEngine engine = policy.getAuthznEngine();

//Once the engine is created, you can use it
//to evaluate requests as many times as you like.
//However, you have to create a container
//provider before that.
ContainerProvider containerCallBackObject =

new ContainerProvider(...);
AuthznResult result = engine.isAuthorized(

"SalesDepartment",
"TeleMarketing",
"Read",
"CustomerRecord",
containerCallBackObject);

//Now you can examine the result.

In our implementation, once the hash table is created in the
pre-processing phase, the expected time to evaluate a policy
is constant independent of the number of rules. Actually, a
request evaluation for a simple policy using our implementa-
tion shows that more than 98 percent of the evaluation time
is consumed by Xalan to evaluate the XSLT-based condi-
tions. As a consequence, one may investigate alternatives
to XSLT-based conditions. Alternative approaches are the
definition of predicates and functions as done by XACL [9]
or the use of well-defined call-back methods that evaluate
the conditions of the policy.

5. CONCLUSION
In this article, we described the semantics of the E-P3P

language for enterprise privacy policies. Formalized and
strictly enforced privacy practices enable enterprises to pro-
vide the level of privacy promised using privacy statements.
In addition, accidental or fraudulent violations of privacy
can be reduced to a large extend.

The authorization engine requires the identification of
data user, action, and purpose of an privacy-relevant access.
As a consequence, we assume that an enterprise deploys an
authentication system that identifies these elements on top
of E-P3P.

An issue that can be difficult in practice is determining
the purpose of an access. Privacy-enabled applications can
provide the purpose and will respect the decision of the E-
P3P engine. Determining purpose and enforcing the decision
for legacy systems is more challenging. If application and
storage system interact using a pre-defined interface such as
SQL [1], the system is required to identify purposes based
on other accessible attributes of the context of the request.
As a consequence, the resolution of purpose may be coarser
than desired.

Acknowledgments
Many IBM colleagues have contributed to the development
of the E-P3P language. In particular, we would like to thank
Calvin Powers for requirements and continuous guidance.

This work has been partially funded by the IBM Privacy
Institute (see www.research.ibm.com/privacy).

6. REFERENCES
[1] I. 9075:1992. Information technology — database

languages — sql, 1992. ISO Standard.

[2] P. Ashley, M. Schunter, and C. Powers. From privacy
promises to privacy management — a new approach
for enforcing privacy throughout an enterprise. In
ACM New Security Paradigms Workshop
(NSPW2002), page to appear, Virginia Beach, VA,
USA, Oct. 2002. ACM Press. To appear.

[3] C. Bettini. Obligation monitoring in policy
management. In 3rd International IEEE Workshop on
Policies for Distributed Systems and Networks (Policy
2002), pages 2–12, Monterey CA, June 2002.

[4] P. Bonatti, E. Damiani, S. D. C. di Vimercati, and
P. Samarati. A component-based architecture for
secure data publication. In 17th Annual Computer
Security Applications Conference, 2001.

[5] S. Fischer-Hübner. IT-Security and Privacy : Design
and Use of Privacy-Enhancing Security Mechanisms.
Number 1958 in Lecture Notes in Computer Science
(LNCS). Springer Verlag, Berlin, 2001.

[6] S. Jajodia, P. Samarati, M. L. Sapino, and
V. Subrahmanian. Flexible support for multiple access
control policies. ACM Transactions on Database
Systems, 26(4):216–260, June 2001.

[7] G. Karjoth and M. Schunter. A privacy policy model
for enterprises. In 15th IEEE Computer Security
Foundations Workshop, pages 271–281. IEEE
Computer Society Press, 2002.

[8] G. Karjoth, M. Schunter, and M. Waidner. The
Platform For Enterprise Privacy Practices –
Privacy-enabled Management Of Customer Data. In
Proceedings of the Privacy Enhancing Technologies
Conference, page to appear, San Francisco, CA, April
14-15 2002.

[9] M. Kudo and S. Hada. XML document security based
on provisional authorizations. In 7th ACM Conference
on Computer and Communications Security, pages
87–96. ACM Press, 2000.

[10] OASIS. eXtensible Access Control Markup Language
(xacml), 2002. Available at
www.oasis-open.org/committees/xacml.

[11] M. Schunter and E. Van Herreweghen. Enterprise
privacy practices vs. privacy promises — how to
promise what you can keep. Research Report RZ 3452
(# 93771), IBM Research, Sept. 2002.

[12] W3C. Platform for Privacy Preferences. Available at
www.w3.org/P3P.

[13] W3C. A P3P Preference Exchange Language 1.0
(APPEL1.0), 2002. Available at
www.w3.org/TR/P3P-preferences.

